Carbon and mercury export from the Arctic rivers and response to permafrost degradation.

Water Res

Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; University Cooperation of Polar Research, Beijing, 100875, China. Electronic address:

Published: September 2019

Arctic rivers export a large amount of organic carbon (OC) and mercury (Hg) to Arctic oceans. Because there are only a few direct calculations of OC and Hg exports from these large rivers, very little is known about their response to changes in the active layer in northern permafrost-dominated areas. In this study, multiyear data sets from the Arctic Great Rivers Observatory (ArcticGRO) are used to estimate the export of dissolved organic carbon (DOC), particulate organic carbon (POC), total mercury (THg) and methylmercury (MeHg) from the six largest rivers (Yenisey, Lena, Ob, Mackenzie, Yukon and Kolyma) draining to the Arctic Ocean. From 2003 to 2017, annual DOC and POC export to the Arctic Ocean was approximately 21612 Gg and 2728 Gg, and the exports of Hg and MeHg to the Arctic Ocean were approximately 20090 kg and 110 kg (0.002% of the total Hg stored in the northern hemisphere active layer). There were great variations in seasonal OC and Hg concentrations and chemical characteristics, with higher fluxes in spring and lower fluxes in winter (baseline). DOC and Hg concentrations are significantly positively correlated to discharge, as discharge continues to increase in response to a deepening active layer thickness during recent past decades. This study shows that previous results likely underestimated DOC exports from rivers in the circum-Arctic regions, and both OC and Hg exports will increase under predicted climate warming scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2019.05.082DOI Listing

Publication Analysis

Top Keywords

organic carbon
12
active layer
12
arctic ocean
12
carbon mercury
8
export arctic
8
arctic rivers
8
rivers response
8
arctic
7
rivers
6
carbon
4

Similar Publications

Forest Soil pH and Dissolved Organic Matter Aromaticity Are Distinct Drivers for Soil Microbial Community and Carbon Metabolism Potential.

Microb Ecol

January 2025

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.

The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively.

View Article and Find Full Text PDF

Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens.

View Article and Find Full Text PDF

Advanced cortisol detection: A cMWCNTs-enhanced MB@Zr-MOF ratiometric electrochemical aptasensor.

Bioelectrochemistry

January 2025

School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China. Electronic address:

A ratiometric electrochemical aptasensor was developed for ultra-sensitive detection of cortisol using aptamer (Apt) as recognition element, methylene blue (MB) as signal probe, and zirconium metal-organic framework (Zr-MOF) as carrier loaded with abundant MB for signal amplification. The carboxylated multi-walled carbon nanotubes (cMWCNTs)-modified Au electrode showed excellent electrochemical performance to immobilize complementary DNA (cDNA) for hybridizing with MB@Zr-MOF-Apt via amide bonds. In the presence of cortisol, it would compete with cDNA for binding the Apt, resulting in the detachment of MB@Zr-MOF-Apt complex from the electrode surface, and the electrochemical signal of MB was decreased, while that of [Fe(CN)] was basically unchanged.

View Article and Find Full Text PDF

Blue carbon refers to organic carbon sequestered by oceanic and coastal ecosystems. This stock has gained global attention as a high organic carbon repository relative to other ecosystems. Within blue carbon ecosystems, tidally influenced wetlands alone store a disproportionately higher amount of organic carbon than other blue carbon systems.

View Article and Find Full Text PDF

Common adhesives for nonstructural applications are manufactured using petrochemicals and synthetic solvents. These adhesives are associated with environmental and health concerns because of their release of volatile organic compounds (VOCs). Biopolymer adhesives are an attractive alternative because of lower VOC emissions, but their strength is often insufficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!