Exploring optimized methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) crystalline cored micelles in anti-glaucoma pharmacotherapy.

Int J Pharm

Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo P.O.B. 11566, Egypt. Electronic address:

Published: July 2019

Methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) polymeric micelles (PMs) open a promising avenue through which ocular drug delivery with superior efficacy and tolerability can be potentially obtained. Methazolamide (MTZ) is an anti-glaucoma drug exhibiting poor corneal penetration, making it an ideal candidate for new polymeric micellar systems. MTZ-PMs were prepared using the thin film hydration procedure and optimized using a Design of Experiment (DoE) approach. In vitro drug release, thermal analyses and FT-IR characterization were also evaluated. MTT assay and histopathological assessment were carried out to verify ocular tolerability as well as Draize irritancy test. In vivo studies were conducted on rabbits to evaluate anti-glaucoma activity in a glucocorticoid-induced glaucoma model. The results showed successful entrapment of MTZ inside PMs matrix as reflected by the complete vanishing of drug melting peak in DSC thermogram and the possible formation of hydrogen bonding between MTZ and mPEG-PCL copolymer in FT-IR spectrum. The selected formula exhibited a particle size of 60 nm, entrapment efficiency of 93% and discrete spherical particles. Moreover, sustained release of MTZ, cellular and tissue biocompatibility and marked anti-glaucoma efficacy, as compared to MTZ solution, were realized. The combined results show that PMs could potentiate the therapeutic outcome of nanotechnology ocular drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2019.06.011DOI Listing

Publication Analysis

Top Keywords

ocular drug
8
drug delivery
8
drug
5
mtz
5
exploring optimized
4
optimized methoxy
4
methoxy polyethylene
4
polyethylene glycol-block-polyε-caprolactone
4
glycol-block-polyε-caprolactone crystalline
4
crystalline cored
4

Similar Publications

Exosome-loading miR-205: a two-pronged approach to ocular neovascularization therapy.

J Nanobiotechnology

January 2025

Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.

Pathological neovascularization is a hallmark of many vision-threatening diseases. However, some patients exhibit poor responses to current anti-VEGF therapies due to resistance and limited efficacy. Recent studies have highlighted the roles of noncoding RNAs in various biological processes, paving the way for RNA-based therapeutics.

View Article and Find Full Text PDF

Purpose: To assess the clinical efficacy of 0.1% cyclosporine A (CsA) in dry eye patients who have shown inadequate responses to previous treatment with 0.05% CsA.

View Article and Find Full Text PDF

Alginate-functionalized nanoceria as ion-responsive eye drop formulation to treat corneal abrasion.

Carbohydr Polym

March 2025

Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; Center for Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan. Electronic address:

In this study, we aimed to develop ion-responsive and biocompatible alginate-capped nanoceria (Ce-ALG) for β-1,3-glucan (i.e., wound healing agent) delivery and corneal abrasion (CA) treatment.

View Article and Find Full Text PDF

Dexamethasone (Dex) is a primary medication for treating dry eye syndrome, and tobramycin-dexamethasone eye drops are commercially available. However, the eye's complex physiological environment reduces its bioavailability, and repeated use can lead to significant systemic toxicity and side effects. This study introduces a novel conjugate of chitosan (CS) and N-acetylcysteine (NAC), a bioadhesive material, which was grafted onto the surface of a Dex-supported nanostructured lipid carrier (NLC) to develop an innovative nanoparticle lipid ocular drug delivery system (CS-NAC@Dex-NLC).

View Article and Find Full Text PDF

Formulation Advances in Posterior Segment Ocular Drug Delivery.

J Ocul Pharmacol Ther

January 2025

Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India.

Posterior segment ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and retinal vein occlusion, are leading causes of vision impairment and blindness worldwide. Effective management of these conditions remains a formidable challenge due to the unique anatomical and physiological barriers of the eye, including the blood-retinal barrier and rapid drug clearance mechanisms. To address these hurdles, nanostructured drug delivery systems are proposed to overcome ocular barriers, target the retina, and enhance permeation while ensuring controlled release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!