The interplay of metabolic and signaling processes is prerequisite for the functionality of cells. Any disturbances may have severe consequences, resulting in the development of diseases. However, the complex coordination of metabolism and signaling events makes it difficult to decipher the link between molecular irregularities and pathogenesis. An excellent way to provide more clarity is to see into the living cell and watch cellular processes in real-time, with the add-on of being able to manipulate certain processes. Live cell imaging enables us to do exactly that, with steadily improving spatial and temporal resolution. Modern genetically encoded fluorescent probes in combination with state-of-the-art high-resolution imaging devices have proven themselves as a valuable approach for monitoring, manipulating and ultimately understanding the interaction of cell metabolism and signaling. These probes also represent powerful tools for detecting biomarkers of disease, identifying new drug targets and elucidating drug actions at the cellular to the molecular level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pharmthera.2019.06.003 | DOI Listing |
Hum Reprod Update
January 2025
Amsterdam UMC, Location Vrije Universiteit Amsterdam, Centre of Expertise on Gender Dysphoria, Amsterdam, The Netherlands.
Background: Transgender and gender diverse (TGD) people seek gender-affirming care at any age to manage gender identities or expressions that differ from their birth gender. Gender-affirming hormone treatment (GAHT) and gender-affirming surgery may alter reproductive function and/or anatomy, limiting future reproductive options to varying degrees, if individuals desire to either give birth or become a biological parent.
Objective And Rationale: TGD people increasingly pursue help for their reproductive questions, including fertility, fertility preservation, active desire for children, and future options.
PLoS One
January 2025
Centre for Intervention Science and Maternal Child Health (CISMAC), Centre for International Health, University of Bergen, Bergen, Norway.
Background: Timely initiation of and exclusive breastfeeding have been recommended as key interventions to enable countries to attain the sustainable development target of reducing neonatal mortality to no more than 12 deaths per 1000 live births and to reduce mortality of children under 5 years to no more than 25 deaths per 1000 live births.
Methods: We conducted a cluster randomized controlled trial with the main objective to assess the effect of an integrated package consisting of: peer counseling, mobile phone messages, and mama kits on promoting health facility births between January 2018 and February 2019, in Lira district, Northern Uganda. In this article, we assessed the effect of the intervention on our two secondary objectives: timely initiation of and exclusivity of breastfeeding.
Proc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.
View Article and Find Full Text PDFAging Cell
January 2025
EPITERNA, Epalinges, Switzerland.
The nematode C. elegans has long served as a gold-standard model organism in aging research, particularly since the discovery of long-lived mutants in conserved aging pathways including daf-2 (IGF1) and age-1 (PI3K). Its short lifespan and small size make it highly suitable for high-throughput experiments.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
Recoding strategies have emerged as a promising approach for developing safer and more effective vaccines by altering the genetic structure of microorganisms, such as viruses, without changing their proteins. This method enhances vaccine safety and efficacy while minimizing the risk of reversion to virulence. Recoding enhances the frequency of CpG dinucleotides, which in turn activates immune responses and ensures a strong attenuation of the pathogens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!