A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DeepVOG: Open-source pupil segmentation and gaze estimation in neuroscience using deep learning. | LitMetric

Background: A prerequisite for many eye tracking and video-oculography (VOG) methods is an accurate localization of the pupil. Several existing techniques face challenges in images with artifacts and under naturalistic low-light conditions, e.g. with highly dilated pupils.

New Method: For the first time, we propose to use a fully convolutional neural network (FCNN) for segmentation of the whole pupil area, trained on 3946 VOG images hand-annotated at our institute. We integrate the FCNN into DeepVOG, along with an established method for gaze estimation from elliptical pupil contours, which we improve upon by considering our FCNN's segmentation confidence measure.

Results: The FCNN output simultaneously enables us to perform pupil center localization, elliptical contour estimation and blink detection, all with a single network and with an assigned confidence value, at framerates above 130 Hz on commercial workstations with GPU acceleration. Pupil centre coordinates can be estimated with a median accuracy of around 1.0 pixel, and gaze estimation is accurate to within 0.5 degrees. The FCNN is able to robustly segment the pupil in a wide array of datasets that were not used for training.

Comparison With Existing Methods: We validate our method against gold standard eye images that were artificially rendered, as well as hand-annotated VOG data from a gold-standard clinical system (EyeSeeCam) at our institute.

Conclusions: Our proposed FCNN-based pupil segmentation framework is accurate, robust and generalizes well to new VOG datasets. We provide our code and pre-trained FCNN model open-source and for free under www.github.com/pydsgz/DeepVOG.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2019.05.016DOI Listing

Publication Analysis

Top Keywords

gaze estimation
12
pupil
8
pupil segmentation
8
fcnn
5
deepvog open-source
4
open-source pupil
4
segmentation
4
segmentation gaze
4
estimation
4
estimation neuroscience
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!