A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs. | LitMetric

Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs.

Syst Appl Microbiol

Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Campus Morelos, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico. Electronic address:

Published: July 2019

Plant roots are inhabited by a large diversity of microbes, some of which are beneficial for the growth of plants and known as plant growth promoting rhizobacteria (PGPR). In this work, we designed a multispecies inoculum of PGPRs containing Rhizobium phaseoli, Sinorhizobium americanum and Azospirillum brasilense nitrogen-fixing strains and other plant-growth promoting bacteria such as Bacillus amyloliquefaciens and Methylobacterium extorquens. We evaluated the effect of this group of bacteria on the growth of one-month-old maize plants. The multispecies inoculum exerted a beneficial effect on maize plants that was greater than that obtained with single-bacteria. Using the same multispecies inoculant, acetylene reduction was recorded in 5-day-old roots indicating active nitrogen fixation by bacteria in maize. Azospirillum nitrogen fixation was lower than that obtained with the multispecies inoculum. We focused on the analysis of R. phaseoli gene expression in presence of other PGPRs. Many R. phaseoli up- regulated genes in roots in the presence of other bacteria are hypothetical, showing our poor knowledge of bacteria-bacteria interactions. Other genes indicated bacterial nutrient competition and R. phaseoli stress. Differentially expressed transcriptional regulators were identified that may be key in bacteria-bacteria interaction regulation. Additionally, gene expression was analyzed from Azospirillum but not from sinorhizobia and methylobacteria due to the low number of transcripts obtained from maize roots. The metatranscriptomic analysis from maize roots showed expression of Azospirillum nif genes in the presence of PGPR bacteria. Our hypothesis is that other bacteria stimulate Azospirillum capacity to fix nitrogen and this should be further explored.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.syapm.2019.05.003DOI Listing

Publication Analysis

Top Keywords

nitrogen fixation
12
multispecies inoculum
12
maize plants
8
gene expression
8
maize roots
8
maize
6
bacteria
6
roots
5
azospirillum
5
metatranscriptomics nitrogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!