The vibrational properties of octahedrane (CH) are calculated using density-functional theory employing two different computational methods: an all-electron Gaussian orbital approach and a Naval Research Laboratory-tight-binding scheme (NRL-TB) coupled with molecular dynamics (NRL-TBMD). Both approaches yield vibrational densities of states for octahedrane that are in good general agreement with each other. NRL Molecular Orbital Library can also provide accurate infrared and Raman spectra which can be analyzed and compared with experimental results, while NRL-TBMD can be conveniently scaled up for larger finite-temperature simulations. This latter approach is used in our paper to produce a theoretical prediction for a stable room temperature structure of octahedrane.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5096404DOI Listing

Publication Analysis

Top Keywords

vibrational properties
8
properties octahedrane
8
theoretical studies
4
studies vibrational
4
octahedrane
4
octahedrane polyhedral
4
polyhedral caged
4
caged hydrocarbon
4
hydrocarbon molecule
4
molecule vibrational
4

Similar Publications

Background/objectives: The unique properties of iron oxide nanoparticles have attracted significant interest within the biomedical community, particularly for magnetic hyperthermia applications. Various synthesis methods have been developed to optimize these nanoparticles.

Methods: In this study, we employed a powdered coconut water (PCW)-assisted sol-gel method to produce magnetite nanoparticles for the first time.

View Article and Find Full Text PDF

Hydrogen, as a zero-emission fuel, produces only water when used in fuel cells, making it a vital contributor to reducing greenhouse gas emissions across industries like transportation, energy, and manufacturing. Efficient hydrogen storage requires lightweight, high-strength vessels capable of withstanding high pressures to ensure the safe and reliable delivery of clean energy for various applications. Type V composite pressure vessels (CPVs) have emerged as a preferred solution due to their superior properties, thus this study aims to predict the performance of a Type V CPV by developing its numerical model and calculating numerical burst pressure (NBP).

View Article and Find Full Text PDF

Vibration Welding of PLA/PHBV Blend Composites with Nanocrystalline Cellulose.

Polymers (Basel)

December 2024

Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.

Thermoplastic composites have garnered significant attention in various industries due to their exceptional properties, such as recyclability and ease of molding. In particular, biocomposites, which combine biopolymers with natural fibers, represent a promising alternative to petroleum-based materials, offering biodegradability and reduced environmental impact. However, there is limited knowledge regarding the efficacy of joining PLA/PHBV-based biocomposites modified with nanocrystalline cellulose (NCC) using vibration welding, which restricts their potential applications.

View Article and Find Full Text PDF

Tungsten oxide (WO) electrochromic devices are obtaining increasing interest due to their color change and thermal regulation. However, most previous work focuses on the absorption or transmission spectra of materials, rather than the optical parameters evolution in full spectrum in the electrochromic processes. Herein, we developed a systematic protocol of ex situ methods to clarify the evolutions of subtle structure changes, Raman vibration modes, and optical parameters of WO thin films in electrochromic processes as stimulated by dosage-dependent Li insertion.

View Article and Find Full Text PDF

This study investigates the structural, vibrational, and biological properties of novel palladium(II) and platinum(II) complexes with 5-chloro-7-azaindole-3-carbaldehyde (5ClL) and 4-chloro-7-azaindole-3-carbaldehyde (4ClL) ligands. Infrared and Raman spectroscopy, combined with DFT (ωB97X-D) calculations, provided valuable information about metal-ligand interactions, the or conformation of the aldehyde group in the ligands, and the presence of isomers in the metal complexes obtained in the solid state. tests were used to evaluate the antiproliferative activity of the novel complexes against several cancer cell lines, including ovarian cancer (A2780), cisplatin-resistant ovarian cancer (A2780cis), colon cancer (HT-29), and triple-negative breast cancer (MDA-MB-231), as well as normal mouse fibroblasts (BALB/3T3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!