Therapeutic efficacy of nanoparticle-drug formulations for cancer applications is significantly impacted by the extent of intra-tumoral accumulation and tumor tissue penetration. We advanced the application of surface plasmon resonance to examine interfacial properties of various clinical and emerging nanoparticles related to tumor tissue penetration. We observed that amine-terminated or positively-charged dendrimers and liposomes bound strongly to tumor extracellular matrix (ECM) proteins, whereas hydroxyl/carboxyl-terminated dendrimers and PEGylated/neutrally-charged liposomes did not bind. In addition, poly(lactic-co-glycolic acid) (PLGA) nanoparticles formulated with cholic acid or F127 surfactants bound strongly to tumor ECM proteins, whereas nanoparticles formulated with poly(vinyl alcohol) did not bind. Unexpectedly, following blood serum incubation, this binding increased and particle transport in ex vivo tumor tissues reduced markedly. Finally, we characterized the protein corona on PLGA nanoparticles using quantitative proteomics. Through these studies, we identified valuable criteria for particle surface characteristics that are likely to mediate their tissue binding and tumor penetration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702074 | PMC |
http://dx.doi.org/10.1016/j.nano.2019.102024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!