A novel reassortant mammalian orthoreovirus with a divergent S1 genome segment identified in a traveler with diarrhea.

Infect Genet Evol

Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia. Electronic address:

Published: September 2019

Mammalian orthoreoviruses with reassortant genomes have recently been detected in various mammals and humans with respiratory, central nervous system, and gastrointestinal symptoms. This study describes the detection of the novel reassortant mammalian orthoreovirus SI-MRV07 in a traveler with gastroenteritis that returned from southeast Asia. The virus was initially detected with electron microscopy in stool, followed by propagation in the epithelial-like monkey kidney Marc145 cell line. Whole-genome sequencing revealed the reassortant nature of the genome segments, whereby the S1 genome segment was the most variable according to known sequences deposited in GenBank. Based on the nucleotide sequence of the S1 genome segment, the isolate clusters to serotype 2, close to the reference strain Jones T2J. The patient's serum showed the highest virus neutralization capacity toward SI-MRV07 and T2J isolates. This study provides additional insight into emerging mammalian orthoreoviruses with reassortant genomes and possible zoonotic potential, which should be carefully monitored in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2019.06.002DOI Listing

Publication Analysis

Top Keywords

genome segment
12
novel reassortant
8
reassortant mammalian
8
mammalian orthoreovirus
8
mammalian orthoreoviruses
8
orthoreoviruses reassortant
8
reassortant genomes
8
mammalian
4
orthoreovirus divergent
4
genome
4

Similar Publications

Motivation: Nanopore sequencing represents a significant advancement in genomics, enabling direct long-read DNA sequencing at the single-molecule level. Accurate simulation of nanopore sequencing signals from nucleotide sequences is crucial for method development and for complementing experimental data. Most existing approaches rely on predefined statistical models, which may not adequately capture the properties of experimental signal data.

View Article and Find Full Text PDF

The UGT72 gene family encodes proteins that glycosylate phenylpropanoids, and thus contribute to the synthesis of various phenolic substances. However, their functional role and evolutionary history in Pyrus spp. remains poorly understood.

View Article and Find Full Text PDF

Genetic diversity and infectivity analysis of tomato yellow leaf curl virus Oman and its associated betasatellite.

Cell Mol Biol (Noisy-le-grand)

November 2024

Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.

Tomato yellow leaf curl virus-Oman (TYLCV-OM),  a variant of the Tomato yellow leaf curl virus-Iran (TYLCV-IR) strain, was identified in 2005 as the cause of tomato yellow leaf curl disease (TYLCD) in Oman and is  associated with a betasatellite namely as Tomato leaf curl betasatellite (ToLCB). Surveys were carried out from three diverse Governorates of Oman to investigate the correlation between the betasatellite and the virus. The visual assessment and scoring of infected tomato plants in the field revealed that the association of betasatellite with the disease was highest in Sharqia at 77%, followed by Dakhlia at41% and lowest in Batinah at30% .

View Article and Find Full Text PDF

Comprehensive analysis of amino acid/auxin permease family genes reveal the positive role of GhAAAP128 in cotton tolerance to cold stress.

Int J Biol Macromol

December 2024

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China. Electronic address:

Amino acid/auxin permeases (AAAPs) play crucial roles in plant development and response to environmental stimuli. They have been characterized at genome-wide levels in several plant species. However, little is known about the AAAP genes in Gossypium.

View Article and Find Full Text PDF

Pepper (Capsicum annuum L.) is one of the most significant vegetable crops worldwide which is known for its pungency and nutritional value. The aldehyde dehydrogenase (ALDH) superfamily encompasses enzymes critical for the detoxification of toxic aldehydes into non-toxic carboxylic acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!