Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human carboxylesterase 1 (CES1), primarily expressed in the liver and adipocytes, is responsible for the hydrolysis of endogenous esters (such as cholesteryl esters and triacylglycerols) and the metabolism of xenobiotic esters (such as clopidogrel and oseltamivir), thus participates in physiological and pathological processes. In this study, a series of natural pentacyclic triterpenoids were collected and their inhibitory effects against CES1 and CES2 were assayed using D-luciferin methyl ester (DME) and N-(2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de] isoquinolin- 6-yl)- 2-chloroacetamide (NCEN) as specific optical substrate for CES1, and CES2, respectively. To this end, betulinic acid (BA) was found with strong inhibitory effect on CES1 (IC, 15 nM) and relative high selectivity over CES2 (>2400-fold). Primary structure-activity relationships (SAR) analysis and docking simulations revealed that the carboxyl group at the C-28 site of BA is very essential for CES1 inhibition. The inhibition kinetic analyses demonstrated that BA was a potent competitive inhibitor against CES1-mediated DME hydrolysis. Further investigation on the inhibitory effect of BA in living cells (HepG2) based assays demonstrated that BA displayed potent inhibitory effects on intracellular CES1 activities, with the low IC value of 1.30 μM. These results demonstrated that BA is potent and highly selective CES1 inhibitor, which might be used as the promising tool for exploring the biological functions of CES1 in complex biological systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fitote.2019.104199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!