Background: Microbial metabolism of lignans from high-fiber plant foods produces bioactive enterolignans, such as enterolactone (ENL) and enterodiol (END). Enterolignan exposure influences cellular pathways important to cancer risk and is associated with reduced colon tumorigenesis in animal models and lower colorectal cancer risk in humans.

Objectives: The aim of this study was to test the effects of a flaxseed lignan supplement (50 mg secoisolariciresinol diglucoside/d) compared with placebo on host gene expression in colon biopsies and exfoliated colonocyte RNA in feces and fecal microbial community composition, and to compare responses in relation to ENL excretion.

Methods: We conducted a 2-period randomized, crossover intervention in 42 healthy men and women (20-45 y). We used RNA-seq to measure differentially expressed (DE) genes in colonic mucosa and fecal exfoliated cells through the use of edgeR and functional analysis with Ingenuity Pathway Analysis. We used 16S ribosomal RNA gene (V1-V3) analysis to characterize the fecal microbiome, and measured END and ENL in 24-h urine samples by gas chromatography-mass spectrometry.

Results: We detected 32 DE genes (false discovery rate <0.05) in the exfoliome, but none in the mucosal biopsies, in response to 60 d of lignan supplement compared with placebo. Statistically significant associations were detected between ENL excretion and fecal microbiome measured at baseline and at the end of the intervention periods. Further, we detected DE genes in colonic mucosa and exfoliome between low- and high-ENL excreters. Analysis of biopsy samples indicated that several anti-inflammatory upstream regulators, including transforming growth factor β and interleukin 10 receptor, were suppressed in low-ENL excreters. Complementary analyses in exfoliated cells also suggested that low-ENL excreters may be predisposed to proinflammatory cellular events due to upregulation of nuclear transcription factor κB and NOS2, and an inhibition of the peroxisome proliferator-activated receptor γ network.

Conclusions: These results suggest that ENL or other activities of the associated gut microbial consortia may modulate response to a dietary lignan intervention. This has important implications for dietary recommendations and chemoprevention strategies. This study was registered at clinicaltrials.gov as NCT01619020.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669062PMC
http://dx.doi.org/10.1093/ajcn/nqy325DOI Listing

Publication Analysis

Top Keywords

fecal microbiome
8
flaxseed lignan
8
cancer risk
8
colonic mucosal
4
mucosal exfoliome
4
exfoliome transcriptomic
4
transcriptomic profiling
4
fecal
4
profiling fecal
4
microbiome response
4

Similar Publications

: Inflammatory bowel disease (IBD) affects gastrointestinal function and may alter fecal and flatulence odor (intestinal odor) due to changes in inflammation, the gut microbiome, and metabolism. Investigating the relationship between dietary habits and intestinal odor in IBD is critical given the relationship between diet, gut health, and microbiome diversity. : We performed a cohort analysis of a monocentric, cross-sectional study at a tertiary referral center and compared the perception of fecal and flatulence odor in 233 IBD patients (n = 117 women) with that of 96 healthy controls (HCs) (n = 67 women).

View Article and Find Full Text PDF

Research on the relationship between gut microbiota (GM) and atopic dermatitis (AD) has seen a growing interest in recent years. The aim of this systematic review was to determine whether differences exist between the GM of adults with AD and that of healthy adults (gut dysbiosis). We conducted a systematic review based on the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses).

View Article and Find Full Text PDF

Effect of Gut Dysbiosis on Onset of GI Cancers.

Cancers (Basel)

December 2024

Division of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.

Dysbiosis in the gut microbiota plays a significant role in GI cancer development by influencing immune function and disrupting metabolic functions. Dysbiosis can drive carcinogenesis through pathways like immune dysregulation and the release of carcinogenic metabolites, and altered metabolism, genetic instability, and pro-inflammatory signalling, contributing to GI cancer initiation and progression. infection and genotoxins released from dysbiosis, lifestyle and dietary habits are other factors that contribute to GI cancer development.

View Article and Find Full Text PDF

A Randomized Pilot Study of Time-Restricted Eating Shows Minimal Microbiome Changes.

Nutrients

January 2025

Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.

Objective: TRE is an emerging approach in obesity treatment, yet there is limited data on how it influences gut microbiome composition in humans. Our objective was to characterize the gut microbiome of human participants before and after a TRE intervention. This is a secondary analysis of a previously published clinical trial examining the effects of time-restricted eating (TRE).

View Article and Find Full Text PDF

Background: The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!