Hyper-activated STAT5B variants are high value oncology targets for pharmacologic intervention. STAT5B, a frequently-occurring oncogenic driver mutation, promotes aggressive T-cell leukemia/lymphoma in patient carriers, although the molecular origins remain unclear. Herein, we emphasize the aggressive nature of STAT5B in driving T-cell neoplasia upon hematopoietic expression in transgenic mice, revealing evidence of multiple T-cell subset organ infiltration. Notably, we demonstrate STAT5B-driven transformation of γδ T-cells in in vivo syngeneic transplant models, comparable to STAT5B patient γδ T-cell entities. Importantly, we present human STAT5B and STAT5B crystal structures, which propose alternative mutation-mediated SH2 domain conformations. Our biophysical data suggests STAT5B can adopt a hyper-activated and hyper-inactivated state with resistance to dephosphorylation. MD simulations support sustained interchain cross-domain interactions in STAT5B, conferring kinetic stability to the mutant anti-parallel dimer. This study provides a molecular explanation for the STAT5B activating potential, and insights into pre-clinical models for targeted intervention of hyper-activated STAT5B.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555848PMC
http://dx.doi.org/10.1038/s41467-019-10422-7DOI Listing

Publication Analysis

Top Keywords

stat5b
11
driver mutation
8
hyper-activated stat5b
8
structural functional
4
functional consequences
4
consequences stat5b
4
stat5b driver
4
mutation hyper-activated
4
stat5b variants
4
variants high
4

Similar Publications

The point mutation N642H of the signal transducer and activator of transcription 5B (STAT5B) protein is associated with aggressive and drug-resistant forms of leukemia. This mutation is thought to promote cancer due to hyperactivation of STAT5B caused by increased stability of the active, parallel dimer state. However, the molecular mechanism leading to this stabilization is not well understood as there is currently no structure of the parallel dimer.

View Article and Find Full Text PDF

Circular RNA SCMH1 suppresses KMO expression to inhibit mitophagy and promote functional recovery following stroke.

Theranostics

December 2024

Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China.

Metabolic dysfunction is one of the key pathological events after ischemic stroke. Disruption of cerebral blood flow impairs oxygen and energy substrate delivery, leading to mitochondrial oxidative phosphorylation dysfunction and cellular bioenergetic stress. Investigating the effects of circSCMH1, a brain repair-related circular RNA, on metabolism may identify novel therapeutic targets for stroke treatment.

View Article and Find Full Text PDF

Transcriptomic analysis of regulatory mechanisms in the telogen-anagen transition of ovine hair follicles.

BMC Genomics

December 2024

College of Animal Science and Technology, Ningxia University, Helan Mountain West Road, Yinchuan, Ningxia, 750021, China.

Background: Dorper sheep are celebrated for their fast maturation and superior meat quality, with some shedding their wool each spring. Wool shedding occurs naturally due to the hair follicle (HF) cycle, but its regulatory mechanisms remain unclear and need further investigation.

Results: In this study, shedding and non-shedding sheep were selected from the same Dorper flock.

View Article and Find Full Text PDF

The transcription factors STAT3, STAT5A, and STAT5B steer hematopoiesis and immunity, but their enhanced expression and activation promote acute myeloid leukemia (AML) or natural killer/T cell lymphoma (NKCL). Current therapeutic strategies focus on blocking upstream tyrosine kinases to inhibit STAT3/5, but these kinase blockers are not selective against STAT3/5 activation and frequent resistance causes relapse, emphasizing the need for targeted drugs. We evaluated the efficacy of JPX-0700 and JPX-0750 as dual STAT3/5 binding inhibitors promoting protein degradation.

View Article and Find Full Text PDF

The intricate regulatory mechanisms governing adipocyte differentiation are pivotal in elucidating the complex pathophysiology underlying obesity. This study aims to explore the dynamic changes in gene expression during the differentiation of 3T3-L1 adipocytes using transcriptomics methods. Protopanaxatriol (PPT) significantly inhibited adipocyte differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!