Bacterial anaerobic respiration using an extracellular electron acceptor plays a predominant role in global biogeochemical cycles. However, the mechanisms of bacterial adaptation to the toxic organic pollutant as the extracellular electron acceptor during anaerobic respiration are not clear, which limits our ability to optimize the strategies for the bioremediation of a contaminated environment. Here, we report the physiological characteristics and the global gene expression of an ecologically successful bacterium, S12, when using a typical toxic organic pollutant, amaranth, as the extracellular electron acceptor. Our results revealed that filamentous shift (the cells stretched to fiber-like shapes as long as 18 μm) occurred under amaranth stress. Persistent stress led to a higher filamentous cell rate and decolorization ability in subcultural cells compared to parental strains. In addition, the expression of genes involved in cell division, the chemotaxis system, energy conservation, damage repair, and material transport in filamentous cells was significantly stimulated. The detailed roles of some genes with significantly elevated expressions in filamentous cells, such as the outer membrane porin genes and , the cytochrome genes and , the global regulatory factor gene , and the methyl-accepting chemotaxis proteins genes and , were identified by site-directed mutagenesis. Finally, a conceptual model was proposed to help deepen our insights into both the bacterial survival strategy when toxic organics were present and the mechanisms by which these toxic organics were biodegraded as the extracellular electron acceptors. Keeping toxic organic pollutants (TOPs) in tolerable levels is a huge challenge for bacteria in extremely unfavorable environments since TOPs could serve as energy substitutes but also as survival stresses when they are beyond some thresholds. This study focused on the underlying adaptive mechanisms of ecologically successful bacterium S12 when exposed to amaranth, a typical toxic organic pollutant, as the extracellular electron acceptor. Our results suggest that filamentous shift is a flexible and valid way to solve the dilemma between the energy resource and toxic stress. Filamentous cells regulate gene expression to enhance their degradation and detoxification capabilities, resulting in a strong viability. These novel adaptive responses to TOPs are believed to be an evolutionary achievement to succeed in harsh habitats and thus have great potential to be applied to environment engineering or synthetic biology if we could picture every unknown node in this pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677847 | PMC |
http://dx.doi.org/10.1128/AEM.00550-19 | DOI Listing |
J Parasitol Res
January 2025
Parasitology and Mycology Center, Adolfo Lutz Institute, Sao Paulo, Brazil.
Visceral leishmaniasis (VL) is a zoonotic disease in which dogs are the main reservoirs. Until now, the serological tests do not present satisfactory sensitivity for diagnosis of these hosts. One of the functions of extracellular vesicles (EVs) is related to immunological host response.
View Article and Find Full Text PDFAndrology
January 2025
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
The neuroendocrine system that comprises the glycoprotein hormones (GpHs) and their receptors is essential for reproduction and metabolism. Each GpH hormone is an αβ heterodimer of cystine-knot proteins and its cognate receptor is a G-protein coupled receptor (GPCR) distinguished by a large leucine-rich-repeat (LRR) extracellular domain that binds the hormone and a class A GPCR transmembrane domain that signals through an associating heterotrimeric G protein. Hence, the receptors are called LRR-containing GPCRs-LGRs.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Biomaterials Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius.
Tissue regeneration after a wound occurs through three main overlapping and interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase. The macrophages in the non-healing wounds remain in the inflammatory loop, but their phenotypes can be changed interactions with nanofibre-based scaffolds mimicking the organisation of the native structural support of healthy tissues.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Northeastern University, Corrosion and Protection Center, NO. 3-11, Wenhua Road, Heping District, Shenyang, P. R. China, Shenyang, CHINA.
The dense passive film on 316L stainless steel is the key in its corrosion resistance. Its interactions with an electroactive biofilm are critical in deciphering microbial corrosion. Herein, an in-depth investigation using genetic manipulations and addition of an exogenous electron mediator found that extracellular electron transfer (EET) mediated by the electroactive S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!