Mesenchymal stromal cells (MSCs) secrete many soluble growth factors and have previously been shown to stimulate nerve regeneration. MSC-seeded processed nerve allografts could potentially be a promising method for large segmental motor nerve injuries. Further progress in our understanding of how the functions of MSCs can be leveraged for peripheral nerve repair is required before making clinical translation. The present study, therefore, investigated whether interactions of adipose-derived MSCs with decellularized nerve allografts can improve gene and protein expression of growth factors that may support nerve regeneration. Human nerve allografts (n = 30) were decellularized and seeded with undifferentiated human adipose-derived MSCs. Subsequently, the MSCs and MSC-seeded grafts were isolated on days 3, 7, 14, and 21 in culture for RNA expression analysis by qRT-PCR. Evaluated genes included NGF, BDNF, PTN, GAP43, MBP, PMP22, VEGF, and CD31. Growth factor production was evaluated and quantified using enzyme-linked immunosorbent assay (ELISA). On day 21, semi-quantitative RT-PCR analysis showed that adherence of MSCs to nerve allografts significantly enhances mRNA expression of neurotrophic, angiogenic, endothelial, and myelination markers (e.g., BDNF, VEGF, CD31, and MBP). ELISA results revealed an upregulation of BDNF and reduction of both VEGF and NGF protein levels. This study demonstrates that seeding of undifferentiated adipose-derived MSCs onto processed nerve allografts permits the secretion of neurotrophic and angiogenic factors that can stimulate nerve regeneration. These favorable molecular changes suggest that MSC supplementation of nerve allografts may have potential in improving nerve regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bjps.2019.04.014 | DOI Listing |
Clin Oral Investig
January 2025
Department of Cranio- and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany.
Introduction: Available therapies for peripheral nerve injury (PNI) include surgical and non-surgical treatments. Surgical treatment includes neurorrhaphy, grafting (allografts and autografts) and tissue-engineered grafting (artificial nerve guide conduits), while non-surgical treatment methods include electrical stimulation, magnetic stimulation, laser phototherapy and administration of nerve growth factors. However, the treatments currently available to best manage the different PNI manifestations remain undetermined.
View Article and Find Full Text PDFJBJS Essent Surg Tech
December 2024
Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut.
Background: For complete disruption of the posterolateral corner (PLC) structures, operative treatment is most commonly advocated, as nonoperative treatment has higher rates of persistent lateral laxity and posttraumatic arthritis. Some studies have shown that acute direct repair results in revision rates upwards of 37% to 40% compared with 6% to 9% for initial reconstruction. In a recent study assessing the outcomes of acute repair of PLC avulsion injuries with 2 to 7 years of follow-up, patients with adequate tissue were shown to have a much lower failure rate than previously documented.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan.
Unlabelled: Human umbilical cord-derived mesenchymal stromal cells (UC-MSCs), which can be prepared in advance and are presumed to be advantageous for nerve regeneration, have potential as a cell source for Bio 3D conduits. The purpose of this study was to evaluate the nerve regeneration ability of Bio 3D conduits made from UC-MSCs using a rat sciatic nerve defect model.
Methods: A Bio 3D conduit was fabricated using a Bio 3D printer by placing UC-MSC spheroids into thin needles according to predesigned 3D data.
J Plast Reconstr Aesthet Surg
November 2024
Department of Hand Surgery, Herlev/Gentofte University Hospital of Copenhagen, Hospitalsvej 1, 2900 Hellerup, Denmark; University of Copenhagen, Faculty of Health and Medical Sciences, Institute of Clinical Medicine, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
The restoration of nerve function after the injury might be complicated by the development of a disorganized fibrous mass-a neuroma. This results in sensory and/or motor deficits and pain that can be severely debilitating. Surgical excision of the painful neuroma may leave a gap, which can be bridged using autografts or allografts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!