In this work, new detection route for ascorbic acid was designed. First, highly luminescent sulfur and nitrogen doped graphene quantum dots (S,N-GQDs) were prepared via simple hydrothermal method using citric acid and thiourea as the C, N and S sources respectively. The prepared S,N-GQDs are characterized by XRD, HRTEM, FTIR, EDS and PL. Investigations showed that prepared S,N-GQDs have a good photostability and excitation-dependent emission fluorescence. Prepared S,N-GQDs showed maximum excitation wavelength and emission wavelength at 400 and 462 nm, respectively. In the following, prepared S,N-GQDs were applied as a photoluminescence probe for detection of ascorbic acid (AA). The designed sensor was based on "off-on" detection mode. The developed sensor had a linear response to AA over a concentration range of 10-500 μM with a detection limit of 1.2 μM. The regression equation is Y = 0.0014 X + 1.2036, where Y and X denote the fluorescence peak intensity and AA concentration, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2019.05.169DOI Listing

Publication Analysis

Top Keywords

prepared sn-gqds
16
ascorbic acid
12
graphene quantum
8
acid designed
8
sn-gqds
5
prepared
5
co-doped graphene
4
quantum dots-induced
4
dots-induced ascorbic
4
acid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!