Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Amylose (AM) and amylopectin (AP) functionality during bread making was unravelled with a temperature-controlled time domain proton nuclear magnetic resonance (TD H NMR) toolbox. Fermented doughs from wheat flour containing starches with atypical AP chain length distribution and/or AM to AP ratio, or supplemented with Bacillus stearothermophilus α-amylase (BStA) were analyzed in situ during baking and cooling. The gelatinization temperature of starch logically depended on AP crystal stability. It was lower when starch contained a higher portion of short AP branches and higher when starch had higher AP content. During cooling, the onset temperature and extent of AM crystallization were positively related to starch AM content. BStA use resulted in slightly weakened starch networks and increased the starch polymers' mobility at the end of baking. That proton distributions evolved in a way corresponding to starch characteristics supports the suggested interpretation of NMR profiles during baking and cooling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2019.05.049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!