A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CT imaging-based histogram features for prediction of EGFR mutation status of bone metastases in patients with primary lung adenocarcinoma. | LitMetric

AI Article Synopsis

  • The study aimed to find CT imaging markers that indicate whether bone metastases in lung adenocarcinoma patients have EGFR mutations by analyzing various histogram features.
  • It involved 57 patients, where CT scans were analyzed to extract 42 histogram features, and statistical tests were performed to identify those significantly associated with EGFR mutation status.
  • Three key features—range, skewness, and quantile 0.975—were found to effectively differentiate between EGFR-positive and negative patients, with the best combined AUC value indicating good potential for diagnosis and prediction of mutation status.

Article Abstract

Objective: To identify imaging markers that reflect the epidermal growth factor receptor (EGFR) mutation status by comparing computed tomography (CT) imaging-based histogram features between bone metastases with and without EGFR mutation in patients with primary lung adenocarcinoma.

Materials And Methods: This retrospective study included 57 patients, with pathologically confirmed bone metastasis of primary lung adenocarcinoma. EGFR mutation status of bone metastases was confirmed by gene detection. The CT imaging of the metastatic bone lesions which were obtained between June 2014 and December 2017 were collected and analyzed. A total of 42 CT imaging-based histogram features were automatically extracted. Feature selection was conducted using Student's t-test, Mann-Whitney U test, single-factor logistic regression analysis and Spearman correlation analysis. A receiver operating characteristic (ROC) curve was plotted to compare the effectiveness of features in distinguishing between EGFR(+) and EGFR(-) groups. DeLong's test was used to analyze the differences between the area under the curve (AUC) values.

Results: Three histogram features, namely range, skewness, and quantile 0.975 were significantly associated with EGFR mutation status. After combining these three features and combining range and skewness, we obtained the same AUC values, sensitivity and specificity. Meanwhile, the highest AUC value was achieved (AUC 0.783), which also had a higher sensitivity (0.708) and specificity (0.788). The differences between AUC values of the three features and their various combinations were statistically insignificant.

Conclusion: CT imaging-based histogram features of bone metastases with and without EGFR mutation in patients with primary lung adenocarcinoma were identified, and they may contribute to diagnosis and prediction of EGFR mutation status.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6556025PMC
http://dx.doi.org/10.1186/s40644-019-0221-9DOI Listing

Publication Analysis

Top Keywords

egfr mutation
28
histogram features
20
mutation status
20
imaging-based histogram
16
bone metastases
16
primary lung
16
patients primary
12
lung adenocarcinoma
12
features
8
prediction egfr
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: