Superpave gyratory compaction (SGC) and Marshall compaction methods are essentially designed according to volumetric properties. In spite of the similarity, the optimum asphalt contents (OAC) of the two methods are greatly affected by the laboratory compaction process, which would further influence their performance. This study aims to evaluate the performance of styrene-butadiene-styrene (SBS)-modified stone mastic asphalt (SMA) with basalt fiber by using SGC and Marshall compaction methods. Basalt fiber was proved to improve and strength the basic properties of SBS-asphalt according to test results of asphalt binder. The effects of SGC and Marshall compaction methods on OAC and volumetric properties, i.e., density, air voids (VA), voids in mineral aggregates (VMA), and voids filled with asphalt (VFA), were evaluated in detail. Finally, the pavement performance of asphalt mixture prepared by SGC and Marshall compaction methods were compared in order to analyze the high-temperature creep, low-temperature splitting, and moisture stability performance. Results showed that the OAC of SGC (~5.70%) was slightly lower than that of Marshall method (5.80%). Furthermore, the pavement performance of SGC specimens were improved to a certain extent compared with Marshall specimens, indicating that SGC has a better compaction effect and mechanical performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630710PMC
http://dx.doi.org/10.3390/polym11061006DOI Listing

Publication Analysis

Top Keywords

compaction methods
20
sgc marshall
16
marshall compaction
16
basalt fiber
12
stone mastic
8
mastic asphalt
8
compaction
8
volumetric properties
8
pavement performance
8
performance
7

Similar Publications

To use electronic health record (EHR) data to develop a scalable and transferrable model to predict 6-month risk for diabetic ketoacidosis (DKA)-related hospitalization or emergency care in youth with type 1 diabetes (T1D). To achieve a sharable predictive model, we engineered features using EHR data mapped to the T1D Exchange Quality Improvement Collaborative's (T1DX-QI) data schema used by 60+ U.S.

View Article and Find Full Text PDF

The development of alternative proteins derived from fungi-based sources is gaining recognition due to their health benefits and lower environmental impact, compared to traditional animal-based sources. In this study, we investigated the culture conditions for mycelia, focusing on the nutritional requirements and yield optimization using solid surface culture and liquid-state culture methods. Our findings indicate that optimal culture conditions involve glucose as the primary carbon source, with an initial pH of 6.

View Article and Find Full Text PDF

A of a network flow is a set of weighted walks whose superposition equals the flow. In this article, we give a simple and linear-time-verifiable complete characterization () of walks that are in such general flow decompositions, i.e.

View Article and Find Full Text PDF

Introduction: A stone is a compact mass of one or more crystallised substances. The essential mechanism of stone formation is an excessive concentration of poorly soluble compounds in the urine. In excessive concentration, these compounds precipitate into crystals, which then aggregate to form a stone.

View Article and Find Full Text PDF

This study proposes a novel text classification model, MBConv-CapsNet, to address large-scale text data classification issues in the Internet era. Integrating the advantages of Mobile Inverted Bottleneck Convolutional Networks and Capsule Networks, this model comprehensively considers text sequence information, word embeddings, and contextual dependencies to capture both local and global information about the text effectively. It transforms from the original text matrix to a more compact and representative feature representation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!