Enhanced fluorescence probes based on Schiff base for recognizing Cu and effect of different substituents on spectra.

Spectrochim Acta A Mol Biomol Spectrosc

State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China. Electronic address:

Published: November 2019

Three enhanced fluorescence probes based on Rhodamine B-Schiff base structure were synthesized for detecting Cu. The corresponding detection limits were found to be 0.25 μM, 0.15 μM and 0.18 μM. Binding ratio and binding sites were determined by Job's and nuclear magnetic titration experiments. The binding constants obtained by the Benesi-Hildebrand equation to be 341.0 M,1.8 × 10 M, and 265.4 M, respectively. As isomers, the different effects of probes on Cu detection were researched. By adjusting the position and the size of the substituent group, the effects of binding sites and steric hindrance on the complexation ratio, response time and detection limit were discussed. Optimal spatial combination structure with Cu was obtained through energy calculation. Detection mechanism of Rhodamine B ring opening based on the complex of the Schiff base with Cu was confirmed. E. coli staining and detection of real water samples had expanded their applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2019.117222DOI Listing

Publication Analysis

Top Keywords

enhanced fluorescence
8
fluorescence probes
8
probes based
8
schiff base
8
binding sites
8
detection
5
based schiff
4
base recognizing
4
recognizing substituents
4
substituents spectra
4

Similar Publications

The development of stable and tunable polycyclic aromatic compounds (PACs) is crucial for the advancement of organic optoelectronics. Conventional PACs, such as acenes, often suffer from poor stability due to photooxidation and oligomerization, which are linked to their frontier molecular orbital energy levels. To address these limitations, we designed and synthesized a new class of π-expanded indoloindolizines by merging indole and indolizine moieties into a single polycyclic framework.

View Article and Find Full Text PDF

Quantitative Analysis of Hepatitis D Virus Using gRNA-Sensitive Semiconducting Polymer Dots.

Anal Chem

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, No. 2699 Qianjin Street, Changchun, Jilin 130012, P. R. China.

Hepatitis D virus (HDV) significantly influences the progression of liver diseases. Through clinical observations and database analyses, it has been established that patients coinfected with HDV and hepatitis B virus (HBV) experience accelerated progression toward cirrhosis, hepatocellular carcinoma (HCC), and liver failure compared to those infected solely with HBV. A higher viral load correlates with increased replicative activity, enhanced infectivity, and more severe disease manifestations.

View Article and Find Full Text PDF

Extreme ultraviolet (EUV) lithography is a cutting-edge technology in contemporary semiconductor chip manufacturing. Monitoring the EUV beam profiles is critical to ensuring consistent quality and precision in the manufacturing process. This study uncovers the practical use of fluorescent nanodiamonds (FNDs) coated on optical image sensors for profiling EUV and soft X-ray (SXR) radiation beams.

View Article and Find Full Text PDF

All-In-One Entropy-Driven DNA Nanomachine for Tumor Cell-Selective Fluorescence/SERS Dual-Mode Imaging of MicroRNA.

Anal Chem

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.

An entropy-driven catalysis (EDC) strategy is appealing for amplified bioimaging of microRNAs in living cells; yet, complex operation procedures, lacking of cell selectivity, and insufficient accuracy hamper its further applications. Here, we introduce an ingenious all-in-one entropy-driven DNA nanomachine (termed as AIO-EDN), which can be triggered by endogenous apurinic/apyrimidinic endonuclease 1 (APE1) to achieve tumor cell-selective dual-mode imaging of microRNA. Compared with the traditional EDC strategy, the integrated design of AIO-EDN achieves autocatalytic signal amplification without extra fuel strands.

View Article and Find Full Text PDF

This study presents a new highly sensitive and specific time-resolved fluoroimmunoassay (TRFIA) for the measurement of trace amounts of the urinary 8-hydroxy-2`-deoxyguanosine (8-OHdG) which is a biomarker for oxidative stress on DNA. The assay relied on a competitive binding approach and a mouse monoclonal antibody which recognized 8-OHdG with high specificity. In this assay, 8-OHdG conjugated with bovine serum albumin protein (8-OHdG-BSA) was employed as a solid phase antigen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!