Bacteria of the genus Alicyclobacillus pose serious quality problems for the juice processing industries that have sought effective alternatives for its control. The present study evaluated the effect of UV-C radiation on the reduction of spores and biofilm formation of Alicyclobacillus spp. on stainless steel and rubber surfaces using industrialized orange juice as a culture medium. Four reference Alicyclobacillus spp. species and different UV-C dosages were investigated. After exposed for 20 min (16.8 kJ/m) to UV-C, the spores of Alicyclobacillus acidoterrestris, Alicyclobacillus herbarius, and Alicyclobacillus cycloheptanicus decreased drastically more of 4 log CFU/mL, with counts below the detection limit of the method (<1.7 log CFU/mL), while the Alicyclobacillus acidocaldarius spores were more sensitive to UV-C, once this spore reduction was observed within 15 min (12.6 kJ/m). Morphological changes in the Alicyclobacillus acidoterrestris spores were observed by scanning electron microscopy. A reduction of biofilm formation was observed for all UV-C treatments, and the higher reductions (approximately 2 log CFU/mL) were found for the Alicyclobacillus acidocaldarius species after 30 min (26.2 kJ/m), on the stainless steel and rubber surfaces. The results suggest that UV-C can be used to reduce the biofilm formation and could be a promising alternative for controlling Alicyclobacillus spp. spores in industrialized orange juice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2019.108238 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!