Low efficiency is often a problem in electrochemical reductive hydrodechlorination (ERHD) to remove chlorinated compounds such as 2,4-dichlorophenol (24DCP) from water. In this study, a composite molecularly imprinted membrane (MIM)/bipolar membrane (BPM) was introduced onto a palladium-coated titanium mesh electrode (BPM/MIM@Pd/Ti) to increase the concentration of 24DCP on the surface of electrode and ERHD efficiency. The efficiency of ERHD of 24DCP increased from 70 to 88% by introduction of the two membranes, from 71 to 89% by increasing current density from 5.0 to 30 mA/cm, and from 80 to 94% by increasing the electrolyte concentration from 0.25 to 1.00 mol/L. Treatment with Fenton's reagent after ERHD achieved 100% 24DCP removal, with chemical oxygen demand and total organic carbon reductions of 91 and 87%, respectively. Notably, these reductions were greater than obtained from the direct oxidation of the 24DCP solution by Fenton's reagent alone (i.e., 98, 84, and 72%, respectively). No products were detected in solution by GC-MS after treatment with the proposed combination technology. The mechanism of 24DCP removal and degradation involved adsorption, electrochemical hydrodechlorination via H, and Fenton oxidation. Results show the process has high potential for removing 24DCP from aqueous solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.05.064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!