A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structure and molecular morphology of a novel moisturizing exopolysaccharide produced by Phyllobacterium sp. 921F. | LitMetric

Structure and molecular morphology of a novel moisturizing exopolysaccharide produced by Phyllobacterium sp. 921F.

Int J Biol Macromol

College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China. Electronic address:

Published: August 2019

Bacterial exopolysaccharides (EPSs) are widely applied in food, cosmetic, and medical industries. The EPS produced by Phyllobacterium sp. 921F was a novel polysaccharide, which exhibits attractive characteristics of high yield, favorable rheological properties, and excellent moisture retention ability. Considering the complexity of polysaccharide structures, specific enzymatic hydrolysis was employed here to resolve the structure of the EPS. End-products including tetra-, hexa- and octa-saccharides were isolated. According to their mass spectroscopy (MS) and nuclear magnetic resonance (NMR) spectra, the backbone of the EPS was found to be mainly comprising a → 4)-β-d-Glcp-(1 → 3)-α-d-Galp(4,6-S-Pyr)-(1 → disaccharide repeating units. Based on atomic force microscopy results, EPS exhibited characteristics that were consistent with a stiff, elongated molecule with no branches. The length and height of the single molecular chain were approximately 600 and 0.7 nm, respectively. Our clarification of structure and molecular morphology of EPS from Phyllobacterium sp. 921F provide a foundation for the industrial application of this potential moisture-retaining material.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.06.019DOI Listing

Publication Analysis

Top Keywords

phyllobacterium 921f
12
structure molecular
8
molecular morphology
8
produced phyllobacterium
8
eps
5
morphology novel
4
novel moisturizing
4
moisturizing exopolysaccharide
4
exopolysaccharide produced
4
921f bacterial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!