AI Article Synopsis

  • The study focused on the roles of two forms of CD100—membrane-bound (mCD100) and soluble (sCD100)—in regulating immune responses during chronic HBV infection.
  • Patients with chronic HBV showed increased mCD100 on T cells but lower levels of sCD100 in serum compared to healthy individuals.
  • Therapeutic treatment with sCD100 boosted T cell responses and helped clear HBV, while inhibiting the CD72 receptor reduced the effectiveness of these responses, highlighting the importance of MMP2/9 in the regulation of sCD100 release and immune activation.

Article Abstract

Background & Aims: CD100 is constitutively expressed on T cells and can be cleaved from the cell surface by matrix metalloproteases (MMPs) to become soluble CD100 (sCD100). Both membrane-bound CD100 (mCD100) and sCD100 have important immune regulatory functions that promote immune cell activation and responses. This study investigated the expression and role of mCD100 and sCD100 in regulating antiviral immune responses during HBV infection.

Methods: mCD100 expression on T cells, sCD100 levels in the serum, and MMP expression in the liver and serum were analysed in patients with chronic HBV (CHB) and in HBV-replicating mice. The ability of sCD100 to mediate antigen-presenting cell maturation, HBV-specific T cell activation, and HBV clearance were analysed in HBV-replicating mice and patients with CHB.

Results: Patients with CHB had higher mCD100 expression on T cells and lower serum sCD100 levels compared with healthy controls. Therapeutic sCD100 treatment resulted in the activation of DCs and liver sinusoidal endothelial cells, enhanced HBV-specific CD8 T cell responses, and accelerated HBV clearance, whereas blockade of its receptor CD72 attenuated the intrahepatic anti-HBV CD8 T cell response. Together with MMP9, MMP2 mediated mCD100 shedding from the T cell surface. Patients with CHB had significantly lower serum MMP2 levels, which positively correlated with serum sCD100 levels, compared with healthy controls. Inhibition of MMP2/9 activity resulted in an attenuated anti-HBV T cell response and delayed HBV clearance in mice.

Conclusions: MMP2/9-mediated sCD100 release has an important role in regulating intrahepatic anti-HBV CD8 T cell responses, thus mediating subsequent viral clearance during HBV infection.

Lay Summary: Chronic hepatitis B virus (HBV) infection is a major public health problem worldwide. The clearance of HBV relies largely on an effective T cell immune response, which usually becomes dysregulated in chronic HBV infection. Our study provides a new mechanism to elucidate HBV persistence and a new target for developing immunotherapy strategies in patients chronically infected with HBV.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2019.05.013DOI Listing

Publication Analysis

Top Keywords

cd8 cell
16
hbv clearance
16
intrahepatic anti-hbv
12
anti-hbv cd8
12
cell responses
12
hbv
12
scd100 levels
12
cell
11
scd100
9
responses hbv
8

Similar Publications

Objectives: Immune checkpoint inhibitors have revolutionized treatment of platinum-refractory advanced bladder cancer, offering hope where options are limited. Response varies, however, influenced by factors such as the tumor's immune microenvironment and prior therapy. Muscle-invasive bladder cancer (MIBC) is stratified into molecular subtypes, with distinct clinicopathologic features affecting prognosis and treatment.

View Article and Find Full Text PDF

Spatiotemporal Dynamic Immunomodulation by Infection-Mimicking Gels Enhances Broad and Durable Protective Immunity Against Heterologous Viruses.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.

Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.

View Article and Find Full Text PDF

The occurrence and progression of breast cancer (BCa) are complex processes involving multiple factors and multiple steps. The tumor microenvironment (TME) plays an important role in this process, but the functions of immune components and stromal components in the TME require further elucidation. In this study, we obtained the RNA-seq data of 1086 patients from The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

Extensive epigenetic reprogramming involves in memory CD8+ T-cell differentiation. The elaborate epigenetic rewiring underlying the heterogeneous functional states of CD8+ T cells remains hidden. Here, we profile single-cell chromatin accessibility and map enhancer-promoter interactomes to characterize the differentiation trajectory of memory CD8+ T cells.

View Article and Find Full Text PDF

Objective: Prolidase deficiency is a metabolic and immunological disorder that is inherited in an autosomal recessive manner. In prolidase deficiency, a broad spectrum of differences is observed in patients, ranging from asymptomatic to multisystem involvement. There is scarce information in the literature on the atypical features and immunophenotypes of this disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!