Development of technologies applied to the biodegradation of warfare nerve agents: Theoretical evidence for asymmetric homogeneous catalysis.

Chem Biol Interact

Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, MG, 37200-000, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic. Electronic address:

Published: August 2019

Organophosphorus compounds have been widely employed to the development of warfare nerve agents and pesticides, resulting in a huge number of people intoxicated annually, being a serious problem of public health. Efforts worldwide have been done in order to design new technologies that are capable of combating or even reversing the poisoning caused by these OP nerve agents. In this line, the bioremediation arises as a promising and efficient alternative for this purpose. As an example of degrading enzymes, there is the organophosphate-degrading (OpdA) enzyme from Agrobacterium radiobacter, which has been quite investigated experimentally due to its high performance in the degradation of neurotoxic nerve agents. This work aims to look into the structural and electronic details that govern the interaction modes of these compounds in the OpdA active site, with the posterior hydrolysis reaction prediction. Our findings have brought about data about the OpdA performance towards different nerve agents, and among them, we may realize that the degradation efficiency strongly depends on the nerve agent structure and its stereochemistry, being in this case the compound Tabun the one more effectively hydrolyzed. By means of the chemical bonds (AIM) and orbitals (FERMO) analysis, it is suggested that the initial reactivity of the OP nerve agents in the OpdA active site does not necessarily dictate the reactivity and interaction modes over the reaction coordinate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2019.06.007DOI Listing

Publication Analysis

Top Keywords

nerve agents
24
warfare nerve
8
interaction modes
8
opda active
8
active site
8
nerve
7
agents
6
development technologies
4
technologies applied
4
applied biodegradation
4

Similar Publications

Background And Objectives: This systematic review aims to synthesize the current literature on the association between chemotherapy (CTX) and chemotherapy-related cognitive impairment (CRCI) with functional and structural brain alterations in patients with noncentral nervous system cancers.

Methods: A comprehensive search of the PubMed/MEDLINE, Web of Science, and Embase databases was conducted, and results were reported following preferred reporting items for systematic review and meta-analyses guidelines. Data on study design, comparison cohort characteristics, patient demographics, cancer type, CTX agents, neuroimaging methods, structural and functional connectivity (FC) changes, and cognitive/psychological assessments in adult patients were extracted and reported.

View Article and Find Full Text PDF

From Cell to Organ: Exploring the Toxicological Correlation of Organophosphorus Compounds in Living System.

Toxicology

January 2025

Department of Medical Elementology and Toxicology, Jamia Hamdard, Delhi, India, 110062. Electronic address:

Malathion is an organophosphate compound widely used as an insecticide in the agriculture sector and is toxic to humans and other mammals. Although several studies have been conducted at different level in different animal models. But there is no work has been conducted on the toxicological correlation from cellular to behavioral level on surviving species model.

View Article and Find Full Text PDF

The nucleotides play multiple fundamental roles that are essential in biochemical enzymatic reactions and signaling pathways. Many diseases are closely associated with their dysregulation. Therefore, reliable and sensitive optical probes to discriminate various nucleotides are essential in biochemistry, drug discovery, and disease diagnosis.

View Article and Find Full Text PDF

Organophosphorus (OP) pesticides (e.g., parathion) and nerve agents (e.

View Article and Find Full Text PDF

Does the Diagnosis of Intraoperative Malignant Hyperthermia Require Case Termination? A Case Report.

A A Pract

January 2025

From the Department of Anesthesiology, New York Presbyterian Hospital, Weill Cornell Medical Center, New York, NY.

Malignant hyperthermia (MH) is a rare genetic disorder triggered by inhalational anesthetics or depolarizing neuromuscular blocking agents that carries significant mortality if not promptly treated. The following case presents a healthy 39-year-old man who developed MH several hours into an anesthetic exposure. Rapid intraoperative stabilization tactics that paralleled intensive care unit (ICU) level care allowed for continuation of operative management as opposed to case termination given the patient was at high risk for permanent nerve palsy if the case were to be aborted during dissection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!