A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prolonged inhibition of P-glycoprotein after exposure to chemotherapeutics increases cell mortality in multidrug resistant cultured cancer cells. | LitMetric

Prolonged inhibition of P-glycoprotein after exposure to chemotherapeutics increases cell mortality in multidrug resistant cultured cancer cells.

PLoS One

Center for Drug Discovery, Design and Delivery, The Center for Scientific Computing, and The Department of Biological Sciences, Southern Methodist University, Dallas, Texas, United States of America.

Published: February 2020

One common reason for cancer chemotherapy failure is increased drug efflux catalyzed by membrane transporters with broad pump substrate specificities, which leads to resistances to a wide range of chemically unrelated drugs. This multidrug resistance (MDR) phenomenon results in failed therapies and poor patient prognoses. A common cause of MDR is over-expression of the P-glycoprotein (ABCB1/P-gp) transporter. We report here on an MDR modulator that is a small molecule inhibitor of P-glycoprotein, but is not a pump substrate for P-gp and we show for the first time that extended exposure of an MDR prostate cancer cell line to the inhibitor following treatment with chemotherapeutics and inhibitor resulted in trapping of the chemotherapeutics within the cancerous cells. This trapping led to decreased cell viability, survival, and motility, and increased indicators of apoptosis in the cancerous cells. In contrast, extended exposure of non-Pgp-overexpressing cells to the inhibitor during and after similar chemotherapy treatments did not lead to decreased cell viability and survival, indicating that toxicity of the chemotherapeutic was not increased by the inhibitor. Increases in efficacy in treating MDR cancer cells without increasing toxicity to normal cells by such extended inhibitor treatment might translate to increased clinical efficacy of chemotherapies if suitable inhibitors can be developed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555590PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217940PLOS

Publication Analysis

Top Keywords

cancer cells
8
pump substrate
8
extended exposure
8
inhibitor treatment
8
cancerous cells
8
decreased cell
8
cell viability
8
viability survival
8
cells
6
inhibitor
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!