Background: Accurate assessment of hepatic steatosis is a key to grade disease severity in non-alcoholic fatty liver disease (NAFLD).

Methods: We developed a digital automated quantification of steatosis on whole-slide images (WSIs) of liver tissue and performed a validation study. Hematoxylin-eosin stained liver tissue slides were digitally scanned, and steatotic areas were manually annotated. We identified thresholds for size and roundness parameters by logistic regression to discriminate steatosis from surrounding liver tissue. The resulting algorithm produces a steatosis proportionate area (SPA; ratio of steatotic area to total tissue area described as percentage). The software can be implemented as a Java plug-in in FIJI, in which digital WSI can be processed automatically using the Pathomation extension.

Results: We obtained liver tissue specimens from 61 NAFLD patients and 18 controls. The area under the curve of correctly classified steatosis by the algorithm was 0.970 (95% CI 0.968-0.973), P < 0.001. Accuracy of the algorithm was 91.9%, with a classification error of 8.1%. SPA correlated significantly with steatosis grade (Rs = 0.845, CI: 0.749-0.902, P < 0.001) and increased significantly with each individual steatosis grade, except between Grade 2 and 3.

Conclusions: We have developed a novel digital analysis algorithm that accurately quantifies steatosis on WSIs of liver tissue. This algorithm can be incorporated when quantification of steatosis is warranted, such as in clinical trials studying efficacy of new therapeutic interventions in NAFLD. © 2019 The Authors. Cytometry Part B: Clinical Cytometry published by Wiley Periodicals, Inc. on behalf of International Clinical Cytometry Society.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899563PMC
http://dx.doi.org/10.1002/cyto.b.21790DOI Listing

Publication Analysis

Top Keywords

liver tissue
16
whole-slide images
8
steatosis
6
liver
5
tissue
5
novel automatic
4
automatic digital
4
digital algorithm
4
algorithm accurately
4
accurately quantifies
4

Similar Publications

Backgrounds And Aims: CD8+T cells are crucially associated with the fight against hepatitis B virus (HBV) infection. CD161 has been shown to express remarkably on HCV-specific CD8+T cells. However, the accurate function of CD161+CD8+T cells in HBV immunity or pathogenesis remains undetermined.

View Article and Find Full Text PDF

Background: We aim to comprehensively analyze and validate the prognostic efficacy of tetraspanin 4 (TSPAN4) and several other migrasome-related markers in hepatocellular carcinoma (HCC).

Methods: The expression, diagnostic, and prognostic efficacy of five migrasome-related genes in HCC were analyzed using several databases. Five pairs of adjacent non-tumor tissues and HCC tissues were used to validate the expression.

View Article and Find Full Text PDF

Morbidity and mortality associated with ESBL Klebsiella pneumoniae infection in different administration routes in albino rats.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Medical Microbiology, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region-F.R., Iraq.

Klebsiella pneumoniae is a non-motile, encapsulated, environmental gram-negative bacterium. Once the bacteria have infiltrated the body, they can display substantial degrees of resistance to drugs and virulence. Extended Spectrum Beta-Lactamases (ESBLs) are most typically seen in K.

View Article and Find Full Text PDF

Role of antioxidative stress activity of Fucoxanthin nanoparticle as hepatoprotective in diabetic rats.

Pak J Pharm Sci

January 2025

Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.

This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.

View Article and Find Full Text PDF

Obesity, often driven by high-fat diets (HFD), is a major global health issue, necessitating effective preventive measures. Tetragonia tetragonoides, a plant with known medicinal properties, has not been extensively studied for its effects on HFD-induced obesity and related genetic changes in mice. This study explores the impact of Tetragonia tetragonoides extract (TTE; 300 mg/kg) on obesity-related traits in C57BL/6J male mice, with a focus on transcriptomic changes in the liver and white adipose tissue (WAT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!