AI Article Synopsis

Article Abstract

Glioma is the most common primary brain tumor and is characterized by a poor prognosis. Protein tyrosine phosphatase 1B (PTPN1), as a non‑transmembrane protein tyrosine phosphatase, has been reported to serve a critical role in different diseases, including cancer. However, the role of PTPN1 in the progression of glioma remains unclear. The present study investigated the expression and clinicopathological characteristics of PTPN1 by analyzing the data from The Cancer Genome Atlas and 136 patients with glioma. It was indicated that PTPN1 was overexpressed in glioma tissues and served as a predictor for poor prognosis in patients with glioma. In addition, a series of in vitro experiments were performed to examine the underlying mechanism of PTPN1 overexpression and the clinical prognosis in patients with glioma. Knockdown of PTPN1 by small interfering RNA suppressed proliferation of glioma cells, including SF295 and A172. In addition, cell mobility was also inhibited by PTPN1 knockdown, downregulating the expression of matrix metallopeptidase 2 (MMP‑2) and MMP‑9. As indicated by western blot analysis, the mitogen‑activated protein kinase (MAPK)/extracellular‑signal‑regulated kinase (ERK) signaling pathway and the phosphatidylinositol 3‑kinase (PI3K)/AKT serine/threonine kinase (AKT) signaling pathway was regulated by PTPN1, while knockdown of PTPN1 significantly suppressed the MAPK/ERK and PI3K/AKT pathways, in addition to the downstream oncogenic transcription factor MYC Proto‑Oncogene. In conclusion, it was demonstrated that PTPN1 is upregulated in glioma tissue and the overexpression of PTPN1 predicted the poor prognosis of patients with glioma. PTPN1 promotes the progression of glioma by activating the MAPK/ERK and PI3K/AKT pathways.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2019.7180DOI Listing

Publication Analysis

Top Keywords

patients glioma
16
ptpn1
13
progression glioma
12
mapk/erk pi3k/akt
12
pi3k/akt pathways
12
poor prognosis
12
prognosis patients
12
glioma
11
ptpn1 promotes
8
promotes progression
8

Similar Publications

Introduction: The optimal treatment for recurrent glioblastoma patients remains not well-defined in international guidelines. On top of that, the availability of national guidelines is uncharted.

Research Question: This study aimed to investigate the availability of national guidelines on the diagnosis and treatment of adult glioma throughout Europe, specifically focusing on recurrent glioblastoma.

View Article and Find Full Text PDF

Limited advancements in managing malignant brain tumors have resulted in poor prognoses for glioblastoma (GBM) patients. Standard treatment involves surgery, radiotherapy, and chemotherapy, which lack specificity and damage healthy brain tissue. Boron-containing compounds, such as boric acid (BA), exhibit diverse biological effects, including anticancer properties.

View Article and Find Full Text PDF

Ga-NOTA-RM26 PET/CT in the evaluation of glioma: a pilot prospective study.

EJNMMI Res

January 2025

Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.

Background: Gliomas are the most common malignant primary tumors of the central nervous system. There is an urgent need for new convenient, targeted and specific imaging agents for gliomas. This study aimed to firstly evaluate the feasibility of Ga-NOTA-RM26 PET/CT imaging in glioma and analyze the relationship between the imaging characteristics and glioma grade, classification and molecular alterations.

View Article and Find Full Text PDF

The foremost feature of glioblastoma (GBM), the most frequent malignant brain tumours in adults, is a remarkable degree of intra- and inter-tumour heterogeneity reflecting the coexistence within the tumour bulk of different cell populations displaying distinctive genetic and transcriptomic profiles. GBM with primitive neuronal component (PNC), recently identified by DNA methylation-based classification as a peculiar GBM subtype (GBM-PNC), is a poorly recognized and aggressive GBM variant characterised by nodules containing cells with primitive neuronal differentiation along with conventional GBM areas. In addition, the presence of a PNC component has been also reported in IDH-mutant high-grade gliomas (HGGs), and to a lesser extent to other HGGs, suggesting that regardless from being IDH-mutant or IDH-wildtype, peculiar genetic and/or epigenetic events may contribute to the phenotypic skewing with the emergence of the PNC phenotype.

View Article and Find Full Text PDF

Purpose: Radiomics-based machine learning (ML) models of amino acid positron emission tomography (PET) images have shown efficiency in glioma prediction tasks. However, their clinical impact on physician interpretation remains limited. This study investigated whether an explainable radiomics model modifies nuclear physicians' assessment of glioma aggressiveness at diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!