This study investigated the intrinsic optical properties of MoS2 monolayers and MoS2/WS2 van der Waals (vdW) heterostructures, grown using chemical vapor deposition. To understand the effect of the growth substrate, samples grown on a SiO2/Si surface were transferred and suspended onto a porous substrate. This transfer resulted in a blue shift of the excitonic photoluminescence (PL) peak generated by MoS2 monolayers, together with an intensity increase. The blue shift and the intensity increase are attributed to the release of lattice strain and the elimination of substrate-induced non-radiative relaxation, respectively. This suspension technique also allowed the observation of PL resulting from interlayer excitons in the MoS2/WS2 vdW heterostructures. These results indicate that the suppression of lattice strain and non-radiative relaxation is essential for the formation of interlayer excitons, which in turn is crucial for understanding the intrinsic physical properties of vdW heterostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr01481kDOI Listing

Publication Analysis

Top Keywords

vdw heterostructures
12
intrinsic optical
8
optical properties
8
mos2 monolayers
8
blue shift
8
intensity increase
8
lattice strain
8
non-radiative relaxation
8
interlayer excitons
8
restoring intrinsic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!