For the mechanisms by which the oxygen gets incorporated in a dual-phase composite system, three hypotheses, i.e. cation inter-diffusion, spillover type and self-cleaning of the perovskite-structured phase, have been provided in the literature. However, experimentally a consensus on the most likely mechanism is yet to be reached. In this work, a specially fused sample of the lanthanum strontium chromium ferrite (LSCrF)-scandia/ceria-stabilised zirconia (ScCeSZ) dual-phase material was investigated. Among the three potential mechanisms, no obvious cation inter-diffusion was firstly observed. A cleaner surface of the ScCeSZ phase was confirmed in the fused sample than in the isolated ScCeSZ single-phase sample while impurity layers were clearly observed on the LSCrF surface, suggesting the cleaning effect from the perovskite. However, more evidence implies that the cleaning effect is not the only reason for the synergistic effects between these two phases. Observations via SIMS analysis lend strong support to the 'spillover-type' mechanism as the oxygen isotopic fraction on the surface of the ScCeSZ increased compared to the isolated single-phase and as the distance to the heterojunction increases, the oxygen isotopic fraction decreases. Moreover, oxygen depleted layers were clearly seen on the top layers of the LSCrF surface which may be associated with the higher oxygen diffusivity in the surface/sub-surface layers, oxygen grain boundary fast diffusion and the impurities on the perovskite phase. For this sample, a combination of 'spillover' and 'self-cleaning' type mechanisms is suggested to be the potential possibility while the contribution from the cation inter-diffusion for this specific sample is proven to be low.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp02175b | DOI Listing |
RSC Adv
August 2023
School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) H-12 Islamabad 44000 Pakistan
Solid oxide fuel cells (SOFCs) are highly efficient, low-emission, and fuel-flexible energy conversion devices. However, their commercialization has lagged due to the lack of long-term durability. Among several performance degradation mechanisms, cathode degradation and elemental inter-diffusion of the electrolyte and cathode has been identified as the predominant factors.
View Article and Find Full Text PDFTo meet the growing demand for global electrical energy storage, high-energy-density electrode materials are required for Li-ion batteries. To overcome the limit of the theoretical energy density in conventional electrode materials based solely on the transition metal redox reaction, the oxygen redox reaction in electrode materials has become an essential component because it can further increase the energy density by providing additional available electrons. However, the increase in the contribution of the oxygen redox reaction in a material is still limited due to the lack of understanding its controlled parameters.
View Article and Find Full Text PDFNanotechnology
March 2020
Center for Autonomous Solar Power (CASP), and Department of Electrical and Computer Engineering, Binghamton University, Binghamton, NY 13902, United States of America.
Incorporating formamidinium (FA) into methylammonium (MA) based perovskite has brought significant thermal and environmental stability including best device performance. It has been shown that addition of Cesium (Cs) makes perovskite robust in terms of thermodynamic stability as well. We explore the means of incorporating Cs into a base perovskite of mixed cation (FA/MA) and mixed halide (I/Br) that has a proven track record of high performance through an inter-diffusion approach.
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2019
Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
For the mechanisms by which the oxygen gets incorporated in a dual-phase composite system, three hypotheses, i.e. cation inter-diffusion, spillover type and self-cleaning of the perovskite-structured phase, have been provided in the literature.
View Article and Find Full Text PDFPhys Chem Chem Phys
July 2018
Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur, India.
It has been realized lately that disorder, primarily in the form of oxygen vacancies, cation stoichiometry, atomic inter-diffusion and antisite defects, has a major effect on the electronic and transport properties of a 2D electron liquid at oxide hetero-interfaces - the first and the last being the two key players. In order to delineate the roles of these two key factors, we have investigated the effect of oxygen vacancies on the antisite disorder at a large number of interfaces separating two La-based transition metal oxides, using density functional theory. The oxygen vacancy is found to suppress antisite disorder in some heterostructures thereby stabilizing the ordered structure, while in some others, it tends to favor disorder, opening up the possibility of using it to control the order.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!