Construction of polycyclic bridged indene derivatives by a tandem 1,3-rearrangement/intramolecular Friedel-Crafts cyclization of propargyl acetates.

Chem Commun (Camb)

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.

Published: June 2019

An unprecedented Lewis acid-catalyzed cascade 1,3-rearrangement/Friedel-Crafts cyclization of propargyl acetates is developed for the construction of polycyclic bridged indene derivatives in moderate to good yields. This practical procedure features mild conditions, broad substrate scope, and easy operation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cc03715bDOI Listing

Publication Analysis

Top Keywords

construction polycyclic
8
polycyclic bridged
8
bridged indene
8
indene derivatives
8
cyclization propargyl
8
propargyl acetates
8
derivatives tandem
4
tandem 13-rearrangement/intramolecular
4
13-rearrangement/intramolecular friedel-crafts
4
friedel-crafts cyclization
4

Similar Publications

Reactivity of Anomalous Aziridines for Versatile Access to High Fsp Amine Chemical Space.

Acc Chem Res

January 2025

Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.

ConspectusThe manipulation of strained rings is a powerful strategy for accessing the valuable chemical frameworks present in natural products and active pharmaceutical ingredients. Aziridines, the smallest N-containing heterocycles, have long served as building blocks for constructing more complex amine-containing scaffolds. Traditionally, the reactivity of typical aziridines has been focused on ring-opening by nucleophiles or the formation of 1,3-dipoles.

View Article and Find Full Text PDF

Dearomatizing Photocyclization and Oxidative Aromatization: Constructing Polycyclic Arenes from Styrenes.

Chem Asian J

January 2025

Xiamen University, Department of Chemistry, Xiamen University, Lujiaxi Building Room 742, 361005, xiamen, CHINA.

The direct construction of polycyclic arenes through ring formation using simple building blocks is highly appealing but remains challenging in organic chemistry. In this study, we introduce an efficient cascade reaction that combines dearomatizing photocyclization with oxidative aromatization, driven by organophotocatalysis. Conducted under mild, transition-metal-free conditions, this reaction seamlessly converts styrene derivatives into a diverse array of functionalized polycyclic aromatic compounds with good yields and regioselectivity.

View Article and Find Full Text PDF

Palladium-Catalyzed Tandem Reactions via Allene Intermediates for the Rapid Synthesis of a Fused Indenone-Indole Scaffold.

Org Lett

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China.

A palladium-catalyzed tandem reaction of 1-(2-iodophenyl)-3-arylprop-2-yn-1-ones and 1-(2-azidophenyl)propargyl ethers is developed to provide the rapid construction of a fused polycyclic indenone-indole scaffold under mild conditions. The reaction proceeds via a highly ordered process involving Sonogashira coupling, propargyl-allenyl isomerization, allene-azide cycloaddition, denitrogenation, and diradical coupling. The proposed reaction mechanism is supported by experimental and computational studies.

View Article and Find Full Text PDF

Enhancing Biodegradation of Insoluble High Molecular Weight Polycyclic Aromatic Hydrocarbons in Macroemulsion (ME) Bioreactors with a Liquid-Liquid Interface.

ACS Appl Mater Interfaces

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.

Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.

View Article and Find Full Text PDF

Building Three-Dimensional Complexity by Intramolecular 2-Aminoallyl Cation-Diene (4+3) Cycloaddition.

Angew Chem Int Ed Engl

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China.

Reliable methods for rapidly constructing C(sp)-rich three-dimensional polycycles are in high demand for organic synthesis and medicinal chemistry. Although there are various mature systems for synthesizing five- or six-membered polycycles, a catalytic platform for accessing diverse cycloheptanoid-containing polycyclic scaffolds is lacking. Herein, we describe a method for copper-catalyzed intramolecular 2-aminoallyl cation-diene (4+3) cycloaddition reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!