Cardio-oncology has emerged as an exciting new field at the intersection of cardiology and oncology. While improved oncology treatment efficacy has increased survival rates in cancer patients, the long-term cardiovascular consequences of this life-saving treatment have become more clinically relevant. Both traditional and newer (targeted) cancer therapies can have cardiovascular and metabolic sequelae, resulting in heart failure, coronary artery disease, myocarditis, pericardial disease, hypertension, and vascular and metabolic perturbations (Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. 375: 1457-1467, 2016). Both acute and chronic cardiovascular toxicities have proven challenging for clinicians and patients, significantly contributing to morbidity and mortality. Although chronic cardiovascular disease affects a growing number of cancer survivors (~17 million in the United States in 2019), cardiovascular toxicities associated with cancer and cancer therapies are poorly understood mechanistically. To balance potential damage to the cardiovascular system with effective and efficient cancer treatment, novel strategies are sorely needed. This perspective focuses on an assembly of articles that discuss novel means of counteracting adverse cardiovascular events in response to anticancer therapy. In light of new clinical syndromes in cardiology due to cancer therapies, we hope to highlight promising research opportunities offered by cardio-oncology (Bellinger AM, Arteaga CL, Force T, Humphreys BD, Demetri GD, Druker BJ, Moslehi JJ. Cardio-oncology: how new targeted cancer therapies and precision medicine can inform cardiovascular discovery. 132: 2248-2258, 2015.).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692734 | PMC |
http://dx.doi.org/10.1152/ajpheart.00277.2019 | DOI Listing |
J Cell Mol Med
March 2025
Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.
The global incidence of biliary tract cancer (BTC) is on the rise, presenting a substantial healthcare challenge. The integration of immune checkpoint inhibitors (ICIs) with molecularly targeted therapies is emerging as a strategy to enhance immune responses. However, the efficacy and underlying mechanisms of these treatments in BTC are still largely unexplored.
View Article and Find Full Text PDFThorac Cancer
March 2025
Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, P. R. China.
Background: Robot-assisted thoracoscopic surgery (RATS) is more precise and flexible than video-assisted thoracoscopic surgery (VATS) for early-stage non-small cell lung cancer (NSCLC) treatment. This study compared the early postoperative functional recovery of patients who underwent triportal RATS with that of patients who underwent uniportal video-assisted thoracic surgery (UVATS) for segmentectomy.
Methods: This observational, prospective study included 172 patients with clinical stage I or II peripheral NSCLC who underwent RATS or UVATS segmentectomy.
ChemMedChem
March 2025
University of Windsor, Chemistry and Biochemistry, 401 Sunset Ave., N9B 3P4, Windsor, CANADA.
Boron Neutron Capture Therapy (BNCT) leverages the nuclear reaction between boron-10 and thermal neutrons to selectively destroy cancer cells while minimizing damage to surrounding healthy tissues. This therapy has found use in treating glioblastoma, which as a brain cancer, is difficult to treat using conventional radiotherapy, surgery, and chemotherapy due to location and the risk of brain damage. However, to work, the cells must contain 10B.
View Article and Find Full Text PDFACS Appl Bio Mater
March 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
Photodynamic therapy (PDT) has been demonstrated to be an effective tool for cancer treatment. Seeking organelle-targeting photosensitizers (PSs) with robust reactive oxygen species (ROS) production is extremely in demand. Herein, we propose an aggregation-induced photosensitization strategy for effective PDT with osmium complexes.
View Article and Find Full Text PDFClin Breast Cancer
February 2025
Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!