Emitters coupled simultaneously to distant positions of a photonic bath, the so-called giant atoms, represent a new paradigm in quantum optics. When coupled to one-dimensional baths, as recently implemented with transmission lines or SAW waveguides, they lead to striking effects such as chiral emission or decoherence-free atomic interactions. Here, we show how to create giant atoms in dynamical state-dependent optical lattices, which offers the possibility of coupling them to structured baths in arbitrary dimensions. This opens up new avenues to a variety of phenomena and opportunities for quantum simulation. In particular, we show how to engineer unconventional radiation patterns, like multidirectional chiral emission, as well as collective interactions that can be used to simulate nonequilibrium many-body dynamics with no analog in other setups. Additionally, the recipes we provide to harness giant atoms in high dimensions can be exported to other platforms where such nonlocal couplings can be engineered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.122.203603 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!