Variational Approach for Impurity Dynamics at Finite Temperature.

Phys Rev Lett

School of Physics and Astronomy, Monash University, Victoria 3800, Australia.

Published: May 2019

We present a general variational principle for the dynamics of impurity particles immersed in a quantum-mechanical medium. By working within the Heisenberg picture and constructing approximate time-dependent impurity operators, we can take the medium to be in any mixed state, such as a thermal state. Our variational method is consistent with all conservation laws and, in certain cases, it is equivalent to a finite-temperature Green's function approach. As a demonstration of our method, we consider the dynamics of heavy impurities that have suddenly been introduced into a Fermi gas at finite temperature. Using approximate time-dependent impurity operators involving only one particle-hole excitation of the Fermi sea, we find that we can successfully model the results of recent Ramsey interference experiments on ^{40}K atoms in a ^{6}Li Fermi gas. We also show that our approximation agrees well with the exact solution for the Ramsey response of a fixed impurity at finite temperature. Our approach paves the way for the investigation of impurities with dynamical degrees of freedom in arbitrary quantum-mechanical mediums.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.122.205301DOI Listing

Publication Analysis

Top Keywords

finite temperature
12
approximate time-dependent
8
time-dependent impurity
8
impurity operators
8
fermi gas
8
impurity
5
variational approach
4
approach impurity
4
impurity dynamics
4
dynamics finite
4

Similar Publications

Phase Switch Driven by the Hidden Half-Ice, Half-Fire State in a Ferrimagnet.

Phys Rev Lett

December 2024

Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA.

The notion of "half fire, half ice" was recently introduced to describe an exotic macroscopic ground-state degeneracy emerging in a ferrimagnet under the critical magnetic field, in which the "hot" spins are fully disordered on the sublattice with smaller magnetic moments and the "cold" spins are fully ordered on the sublattice with larger magnetic moments. Here, we further point out that this state has a twin named "half ice, half fire" in which the hot and cold spins switch positions. The new state is an excited state-thus hidden in the ground-state phase diagram-and is robust with respect to the interactions that destroy the half-fire, half-ice state.

View Article and Find Full Text PDF

The emergence of a quantum spin liquid (QSL), a state of matter that can result when electron spins are highly correlated but do not become ordered, has been the subject of a considerable body of research in condensed matter physics [1,2]. Spin liquid states have been proposed as hosts for high-temperature superconductivity [3] and can host topological properties with potential applications in quantum information science [4]. The excitations of most quantum spin liquids are not conventional spin waves but rather quasiparticles known as spinons, whose existence is well established experimentally only in one-dimensional systems; the unambiguous experimental realization of QSL behavior in higher dimensions remains challenging.

View Article and Find Full Text PDF

Generic Elasticity of Thermal, Underconstrained Systems.

Phys Rev Lett

December 2024

CPT, CNRS, Aix Marseille Univ, Université de Toulon, (UMR 7332), Turing Center for Living Systems, Marseille, France.

Athermal (i.e., zero-temperature) underconstrained systems are typically floppy, but they can be rigidified by the application of external strain, which is theoretically well understood.

View Article and Find Full Text PDF

Estimating in vivo power deposition density in thermotherapies based on ultrasound thermal strain imaging.

J Acoust Soc Am

January 2025

Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

In thermal therapies, accurate estimation of in-tissue power deposition density (PDD) is essential for predicting temperature distributions over time or regularizing temperature imaging. Based on our previous work on ultrasound thermometry, namely, multi-thread thermal strain imaging (MT-TSI), this work develops an in vivo PDD estimation method. Specifically, by combining the TSI model infinitesimal echo strain filter with the bio-heat transfer theory (the Pennes equation), a finite-difference time-domain model is established to allow online extraction of the PDD.

View Article and Find Full Text PDF

Precision glass molding (PGM) technology, as an efficient and straightforward method for producing glass lenses, has been widely applied in the mass production of aspheric glass lenses. However, molding complex surfaces such as free-form and array surfaces is still in its infancy. To reveal the variations of temperature and stress of microlens array (MLA) optical elements during the molding process, a simulation model was established using the finite element method (FEM), and the heating and forming stages of a chalcogenide glass MLA optical element were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!