The ability to witness nonlocal correlations lies at the core of foundational aspects of quantum mechanics and its application in the processing of information. Commonly, this is achieved via the violation of Bell inequalities. Unfortunately, however, their systematic derivation quickly becomes unfeasible as the scenario of interest grows in complexity. To cope with that, here, we propose a machine learning approach for the detection and quantification of nonlocality. It consists of an ensemble of multilayer perceptrons blended with genetic algorithms achieving a high performance in a number of relevant Bell scenarios. As we show, not only can the machine learn to quantify nonlocality, but discover new kinds of nonlocal correlations inaccessible with other current methods as well. We also apply our framework to distinguish between classical, quantum, and even postquantum correlations. Our results offer a novel method and a proof-of-principle for the relevance of machine learning for understanding nonlocality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.122.200401 | DOI Listing |
JMIR Ment Health
December 2024
Otsuka Pharmaceutical Development & Commercialization, Inc, 508 Carnegie Center Drive, Princeton, NJ, 08540, United States, 1 609 535 9035.
Background: Sleep-wake patterns are important behavioral biomarkers for patients with serious mental illness (SMI), providing insight into their well-being. The gold standard for monitoring sleep is polysomnography (PSG), which requires a sleep lab facility; however, advances in wearable sensor technology allow for real-world sleep-wake monitoring.
Objective: The goal of this study was to develop a PSG-validated sleep algorithm using accelerometer (ACC) and electrocardiogram (ECG) data from a wearable patch to accurately quantify sleep in a real-world setting.
JMIR Form Res
December 2024
thymia, International House, 64 Nile Street, London, N1 7SR, United Kingdom, 44 7477285252.
Background: Anxiety and depression represent prevalent yet frequently undetected mental health concerns within the older population. The challenge of identifying these conditions presents an opportunity for artificial intelligence (AI)-driven, remotely available, tools capable of screening and monitoring mental health. A critical criterion for such tools is their cultural adaptability to ensure effectiveness across diverse populations.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.
Identifying phage-host interactions (PHIs) is a crucial step in developing phage therapy, which is the promising solution to addressing the issue of antibiotic resistance in superbugs. However, the lifestyle of phages, which strongly depends on their host for life activities, limits their cultivability, making the study of predicting PHIs time-consuming and labor-intensive for traditional wet lab experiments. Although many deep learning (DL) approaches have been applied to PHIs prediction, most DL methods are predominantly based on sequence information, failing to comprehensively model the intricate relationships within PHIs.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Electrical and Computer Engineering Department, Lebanese American University, Byblos, Lebanon.
This scoping review summarizes two emerging electrical impedance technologies: electrical impedance myography (EIM) and electrical impedance tomography (EIT). These methods involve injecting a current into tissue and recording the response at different frequencies to understand tissue properties. The review discusses basic methods and trends, particularly the use of electrodes: EIM uses electrodes for either injection or recording, while EIT uses them for both.
View Article and Find Full Text PDFFront Cardiovasc Med
December 2024
Cardiovascular Medicine Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
Objective: To explore whether radiomics analysis of pericoronary adipose tissue (PCAT) captured by coronary computed tomography angiography (CCTA) could discriminate unstable angina (UA) from stable angina (SA).
Methods: In this single-center retrospective case-control study, coronary CT images and clinical data from 240 angina patients were collected and analyzed. Patients with unstable angina ( = 120) were well-matched with those having stable angina ( = 120).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!