Why can hosts coexist with conspecifics or phylogenetically proximate neighbours despite sharing specialist enemies? Do the hosts evolve increased enemy resistance? If so, does this have costs in terms of climatic-stress resistance, or in such neighbourhoods, does climatic-stress select for resistances that are multifunctional against climate and enemies? We studied oak (Quercus petraea) descendants from provenances of contrasting phylogenetic neighbourhoods and climates in a 25-year-old common garden. We found that descendants from conspecific or phylogenetically proximate neighbourhoods had the toughest leaves and fewest leaf miners, but no reduction in climatic-stress resistance. Descendants from such neighbourhoods under cold or dry climates had the highest flavonol and anthocyanin levels and the thickest leaves. Overall, populations facing phylogenetically proximate neighbours can rapidly evolve herbivore resistance, without cost to climatic-stress resistance, but possibly facilitating resistance against cold and drought via multifunctional traits. Microevolution might hence facilitate ecological coexistence of close relatives and thereby macroevolutionary conservatism of niches.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.13285DOI Listing

Publication Analysis

Top Keywords

climatic-stress resistance
16
phylogenetically proximate
12
coexistence close
8
close relatives
8
cost climatic-stress
8
proximate neighbours
8
resistance
7
climatic-stress
5
evolutionary response
4
response coexistence
4

Similar Publications

Seasonal variation of microbial community and diversity in the Taiwan Strait sediments.

Environ Res

January 2025

Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.

Article Synopsis
  • Human activities and ocean currents in the Taiwan Strait show seasonal variations, but how marine microbes respond to these changes under human and climate stress is not fully understood.
  • Using 16S rRNA gene amplicon sequencing, the study analyzed sediment samples and found distinct seasonal patterns in microbial diversity, with Proteobacteria and Desulfobacterota as dominant groups.
  • Key factors like iron concentrations, heavy metals, and temperature fluctuations significantly influenced microbial community structures, while certain core microbial groups and marker species could serve as indicators for monitoring the health of the Taiwan Strait ecosystem.
View Article and Find Full Text PDF
Article Synopsis
  • Rice is a vital global staple, feeding over half the population but facing threats from climate change, pests, and diseases that compromise its sustainability.
  • CRISPR-Cas9 technology offers a promising solution for improving rice yield and resilience by allowing precise gene editing without introducing foreign DNA.
  • This study outlines various CRISPR-based techniques to enhance rice's ability to withstand environmental stressors, emphasizing the importance of integrating genetic improvements with established farming practices to ensure food security.
View Article and Find Full Text PDF

Climate change is a major concern for the near future and for livestock breeding. Cattle breeding, due to its greenhouse gas emissions, is one of the most implicated industries. Consequently, the main future goals are to breed animals resilient to climate change, with the aim of lowering the livestock impact on the environment and selecting animals that will be able to resist different, unsuitable, and changing climates.

View Article and Find Full Text PDF

The behavior of two polymeric protective paint coatings (epoxy and polyurethane) applied over an epoxy primer coating on steel plates was investigated in this study, focusing on their role in providing anticorrosive protection against various climatic stress factors. Among the numerous climatic factors that can affect the lifetime of anticorrosive coatings, the following were selected for this work: dry heat, UV radiation, humidity, and extreme conditions such as salt fog, marine atmosphere, and alpine atmosphere. The objective was to determine the remaining lifetime of these protective coatings before replacement is needed to prevent damage to the equipment they protect.

View Article and Find Full Text PDF

Ongoing climate change increasingly affects growth conditions of native conifers such as Picea abies (Norway spruce) and Pinus sylvestris (Scots pine) in Central Europe. These conifers are primarily cultivated for wood production. To obtain ecologically and economically stable forests, forestry seeks alternative species that might be less prone to novel climatic conditions, such as Cedrus libani (Lebanon cedar).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!