Iterative Segmentation from Limited Training Data: Applications to Congenital Heart Disease.

Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018)

Computer Science and Artificial Intelligence Lab, MIT, Cambridge, USA.

Published: September 2018

We propose a new iterative segmentation model which can be accurately learned from a small dataset. A common approach is to train a model to directly segment an image, requiring a large collection of manually annotated images to capture the anatomical variability in a cohort. In contrast, we develop a segmentation model that recursively evolves a segmentation in several steps, and implement it as a recurrent neural network. We learn model parameters by optimizing the intermediate steps of the evolution in addition to the final segmentation. To this end, we train our segmentation propagation model by presenting incomplete and/or inaccurate input segmentations paired with a recommended next step. Our work aims to alleviate challenges in segmenting heart structures from cardiac MRI for patients with congenital heart disease (CHD), which encompasses a range of morphological deformations and topological changes. We demonstrate the advantages of this approach on a dataset of 20 images from CHD patients, learning a model that accurately segments individual heart chambers and great vessels. Compared to direct segmentation, the iterative method yields more accurate segmentation for patients with the most severe CHD malformations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545481PMC
http://dx.doi.org/10.1007/978-3-030-00889-5_38DOI Listing

Publication Analysis

Top Keywords

iterative segmentation
8
congenital heart
8
heart disease
8
segmentation model
8
model accurately
8
segmentation
7
model
6
segmentation limited
4
limited training
4
training data
4

Similar Publications

Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.

View Article and Find Full Text PDF

With advancements in autonomous driving technology, the coupling of spatial paths and temporal speeds in complex scenarios becomes increasingly significant. Traditional sequential decoupling methods for trajectory planning are no longer sufficient, emphasizing the need for spatio-temporal joint trajectory planning. The Constrained Iterative LQR (CILQR), based on the Iterative LQR (ILQR) method, shows obvious potential but faces challenges in computational efficiency and scenario adaptability.

View Article and Find Full Text PDF

This paper aims to address the challenge of precise robotic grasping of molecular sieve drying bags during automated packaging by proposing a six-dimensional (6D) pose estimation method based on an red green blue-depth (RGB-D) camera. The method consists of three components: point cloud pre-segmentation, target extraction, and pose estimation. A minimum bounding box-based pre-segmentation method was designed to minimize the impact of packaging wrinkles and skirt curling.

View Article and Find Full Text PDF

Intraoperative Augmented Reality for Vitreoretinal Surgery Using Edge Computing.

J Pers Med

January 2025

Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA.

: Augmented reality (AR) may allow vitreoretinal surgeons to leverage microscope-integrated digital imaging systems to analyze and highlight key retinal anatomic features in real time, possibly improving safety and precision during surgery. By employing convolutional neural networks (CNNs) for retina vessel segmentation, a retinal coordinate system can be created that allows pre-operative images of capillary non-perfusion or retinal breaks to be digitally aligned and overlayed upon the surgical field in real time. Such technology may be useful in assuring thorough laser treatment of capillary non-perfusion or in using pre-operative optical coherence tomography (OCT) to guide macular surgery when microscope-integrated OCT (MIOCT) is not available.

View Article and Find Full Text PDF

Precise segmentation of unmanned aerial vehicle (UAV)-captured images plays a vital role in tasks such as crop yield estimation and plant health assessment in banana plantations. By identifying and classifying planted areas, crop areas can be calculated, which is indispensable for accurate yield predictions. However, segmenting banana plantation scenes requires a substantial amount of annotated data, and manual labeling of these images is both timeconsuming and labor-intensive, limiting the development of large-scale datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!