Background: Lymphoma is one of the most common hematologic malignancy. Drug resistance is the main obstacle faced in lymphoma treatment. Cancer stem cells are considered as the source of tumor recurrence, metastasis and drug resistance. The β-Asarone, a low-toxicity compound from the traditional medical herb , has been shown to act as an anti-cancer reagent in various cancer types. However, the anti-cancer activities of β-Asarone in lymphoma have not been shown.
Methods: Cell counting assay was used to evaluate Raji cell proliferation. CCK8 assay was used to evaluate the cell viability. Annexin-V/PI staining and flow cytometry analysis were used to evaluate apoptosis. ALDEFLUOR assay was used to evaluate the stem-like population. Luciferase reporter assay was used to examine the activation of NF-κB signaling. Western blot and polymerase chain reaction (PCR) were used to determine the expression of interested genes.
Results: We showed that β-Asarone inhibited proliferation and induced apoptosis in Raji lymphoma cells in a dose-dependent manner. Additionally, β-Asarone functioned as a sensitizer of doxorubicin and resulted in synergistic effects on inhibition of proliferation and induction of apoptosis when combined with doxorubicin treatment. Interestingly, we found that β-Asarone also reduced the stem-like population of Raji lymphoma cells in a dose-dependent manner, and suppressed the expression of c-Myc and Bmi1. Importantly, β-Asarone abolished doxorubicin-induced enrichment of the stem-like population. In the mechanism study, we revealed that β-Asarone suppressed not only basal NF-κB activity but also Tumor necrosis factor α (TNF-α) induced NF-κB activity. Moreover, blocking NF-κB signaling inactivation was critical for β-Asarone induced apoptosis and inhibition of proliferation, but not for the effect on β-Asarone reduced stem-like population. In fact, β-Asarone suppressed stem-like population by destabilizing Bmi1 via a proteasome-mediated mechanism.
Conclusions: Our data suggested the application of β-Asarone to lower the toxic effect of doxorubicin and increase the sensitivity of doxorubicin in clinical treatment. More importantly, our data revealed a novel role of β-Asarone which could be used to eliminate stem-like population in lymphoma, implying that β-Asarone might reduce relapse and drug resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547485 | PMC |
http://dx.doi.org/10.1186/s12935-019-0873-3 | DOI Listing |
Cell Rep Med
December 2024
National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; The Kids Research Institute, University of Western Australia, Nedlands WA 6009, Australia. Electronic address:
Platinum-based chemotherapy in combination with anti-PD-L1 antibodies has shown promising results in mesothelioma. However, the immunological mechanisms underlying its efficacy are not well understood and there are no predictive biomarkers to guide treatment decisions. Here, we combine time course RNA sequencing (RNA-seq) of peripheral blood mononuclear cells with pre-treatment tumor transcriptome data from the single-arm, phase 2 DREAM trial (N = 54).
View Article and Find Full Text PDFACS Omega
December 2024
Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India.
Cancer stem cells (CSCs) are responsible for chemoresistance and tumor relapse in many solid malignancies, including lung and ovarian cancer. Ellagic acid (EA), a natural polyphenol, exhibits anticancer effects on various human malignancies. However, its impact and mechanism of action on cancer stem-like cells (CSLCs) are only partially understood.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
Chemotherapy remains a major therapeutic approach to cancer treatment. However, its effectiveness can be compromised by the heterogeneity of a solid tumor, in which different cancer cell populations display varied responses to chemotherapy. Such an intratumor heterogeneous structure is maintained by the cancer stem-like cells (CSCs) with inherent capacities for self-renewal and differentiation, giving rise to diverse cell populations.
View Article and Find Full Text PDFCells
December 2024
Departments of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
Solid tumors vary by the immunogenic potential of the tumor microenvironment (TME) and the likelihood of response to immunotherapy. The emerging literature has identified key immune cell populations that significantly impact immune activation or suppression within the TME. This study investigated candidate T-cell populations and their differential infiltration within different tumor types as estimated from mRNA co-expression levels of the corresponding cellular markers.
View Article and Find Full Text PDFNat Cancer
December 2024
Genentech, South San Francisco, CA, USA.
Blockade of immune checkpoints PD-1 and TIGIT has demonstrated activity in mouse tumor models and human patients with cancer. Although these coinhibitory receptors can restrict signaling in CD8 T cells by regulating their associated co-stimulatory receptors CD28 and CD226, the functional consequences of combining PD-1 and TIGIT blockade remain poorly characterized. In mouse tumor models, we show that combination blockade elicited CD226-driven clonal expansion of tumor antigen-specific CD8 T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!