True colour vision requires comparing the responses of different spectral classes of photoreceptors. In insects, there is a wealth of data available on the physiology of photoreceptors and on colour-dependent behaviour, but less is known about the neural mechanisms that link the two. The available information in bees indicates a diversity of colour opponent neurons in the visual optic ganglia that significantly exceeds that known in humans and other primates. Here, we present a simple mathematical model for colour processing in the optic lobes of bees to explore how this diversity might arise. We found that the model can reproduce the physiological spectral tuning curves of the 22 neurons that have been described so far. Moreover, the distribution of the presynaptic weights in the model suggests that colour-coding neurons are likely to be wired up to the receptor inputs randomly. The perceptual distances in our random synaptic weight model are in agreement with behavioural observations. Our results support the idea that the insect nervous system might adopt partially random wiring of neurons for colour processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554269 | PMC |
http://dx.doi.org/10.1038/s41598-019-44375-0 | DOI Listing |
J Neurochem
January 2025
School of Life Science, Nanchang University, Nanchang, China.
Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.
View Article and Find Full Text PDFJ Physiol
January 2025
Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents.
View Article and Find Full Text PDFPeerJ
January 2025
Departments of Clinical Pathology, The Second Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, Zhejiang, China.
Objective: Breast cancer stands as the most prevalent form of cancer among women globally. This heterogeneous disease exhibits varying clinical behaviors. The stratification of breast cancer patients into risk groups, determined by their metastasis and survival outcomes, is pivotal for tailoring personalized treatments and therapeutic interventions.
View Article and Find Full Text PDFEndocrinology
January 2025
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA.
Hypothalamic kisspeptin (Kiss1) neurons are vital for maintaining fertility in the mammal. In the female rodent, Kiss1 neurons populate the anteroventral periventricular/periventricular nuclei (Kiss1AVPV/PeN) and the arcuate nucleus (Kiss1ARH). Kiss1ARH neurons (a.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
The apoptotic molecule Fas and its ligand FasL are involved in the process of T-lymphocyte death, which may lead to lymphopenia, a characteristic of severe coronavirus disease 2019 (COVID-19). In this study, we investigated the influence of polymorphisms in the and genes, and gene expression, and plasma cytokine levels on COVID-19 severity and long COVID occurrence. A total of 116 individuals with severe COVID-19 and 254 with the non-severe form of the disease were evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!