β-Lactams are the most successful antibacterials, yet their use is threatened by resistance, importantly as caused by β-lactamases. β-Lactamases fall into two mechanistic groups: the serine β-lactamases that utilise a covalent acyl-enzyme mechanism and the metallo β-lactamases that utilise a zinc-bound water nucleophile. Achieving simultaneous inhibition of both β-lactamase classes remains a challenge in the field. Vaborbactam is a boronate-based inhibitor that reacts with serine-β-lactamases to form covalent complexes that mimic tetrahedral intermediates in catalysis. Vaborbactam has recently been approved for clinical use in combination with the carbapenem meropenem. Here we show that vaborbactam moderately inhibits metallo-β-lactamases from all 3 subclasses (B1, B2 and B3), with a potency of around 20-100 fold below that by which it inhibits its current clinical targets, the Class A serine β-lactamases. This result contrasts with recent investigations of bicyclic boronate inhibitors, which potently inhibit subclass B1 MBLs but which presently lack activity against B2 and B3 enzymes. These findings indicate that cyclic boronate scaffolds have the potential to inhibit the full range of β-lactamases and justify further work on the development of boronates as broad-spectrum β-lactamase inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593178 | PMC |
http://dx.doi.org/10.1016/j.bmcl.2019.05.031 | DOI Listing |
Front Plant Sci
January 2025
Institute of Life Sciences, Kangwon National University, Chuncheon, Republic of Korea.
Plant peptides, synthesized from larger precursor proteins, often undergo proteolytic cleavage and post-translational modifications to form active peptide hormones. This process involves several proteolytic enzymes (proteases). Among these, SBTs (serine proteases) are a major class of proteolytic enzymes in plants and play key roles in various regulatory mechanisms, including plant immune response, fruit development and ripening, modulating root growth, seed development and germination, and organ abscission.
View Article and Find Full Text PDFVirulence
December 2025
Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA.
This review summarizes key virulence factors associated with group B (GBS), a significant pathogen particularly affecting pregnant women, fetuses, and infants. Beginning with an introduction to the historical transition of GBS from a zoonotic pathogen to a prominent cause of human infections, particularly in the perinatal period, the review describes major disease manifestations caused by GBS, including sepsis, meningitis, chorioamnionitis, pneumonia, and others, linking each to specific virulence mechanisms. A detailed exploration of the genetic basis for GBS pathogenicity follows, emphasizing the roles of capsules in pathogenesis and immune evasion.
View Article and Find Full Text PDFAnal Chem
January 2025
Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara 06230, Turkey.
Metabolite levels and turnover rates are necessary to understand metabolomic dynamics in a living organism fully. Amino acids can play distinct roles in various cellular processes, and their abnormal levels are associated with pathological conditions, including cancer. Therefore, their levels, especially turnover rates, may provide enormous information about a phenotype.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Oncology, Jingjiang People's Hospital Affiliated With Yangzhou University, Jingjiang, 214500, China.
Cholesterol metabolism is abnormally active in tumour cells. Metabolic enzymes related to cholesterol metabolism are upregulated in tumours, but their nonmetabolic functions remain unclear. We found that MVK (mevalonate kinase) is upregulated in lung adenocarcinoma tissues vs.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
The Director's Office, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China.
Atherosclerosis, a chronic inflammatory condition characterized by plaque formation, often leads to instability, particularly under Type 2 diabetes mellitus (T2DM) conditions, which exacerbate cardiovascular risks. However, the molecular mechanisms underlying this process remain incompletely understood. In this study, we investigated the correlation between acute coronary syndrome (ACS) and serum levels of Nε-carboxyethyl-lysin (CEL), a prominent advanced glycation end product (AGE) elevated in T2DM, in a cohort of 225 patients with coronary artery disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!