AI Article Synopsis

Article Abstract

The transformation of hepatic stellate cells (HSCs) to activated myofibroblasts plays a critical role in the progression of hepatic fibrosis, while iron-catalyzed production of free radical, including reaction and active oxygen (ROS), and activation and transformation of HSC into a myofibroblasts has been regarded as a major mechanism. In the present study, we attempted to investigate the mechanism of iron overload in hepatic fibrosis from the perspective of regulating HSC activation via oxidative stress and miR-374a/Myc axis. FAC stimulation significantly increased ROS production and TGF-β1 and IL-6 release dose-dependently in hepatocytes. miR-374a could target Myc, a co-transcription factor of both TGF-β1 and IL-6, to negatively regulate Myc expression; FAC stimulation significantly suppressed miR-374a expression, whereas the suppressive effect of FAC stimulation on miR-374a expression could be reversed by ROS inhibitor NAC, indicating that miR-374a could be modulated by iron overload-induced ROS. Via targeting Myc, miR-374a overexpression significantly reduced FAC-induced increases in TGF-β1 and IL-6 levels within L02 cells, whereas the effects of miR-374a overexpression were significantly attenuated via Myc overexpression. Finally, miR-374a overexpression attenuated FAC-induced activity of HSCs by decreasing α-SMA and Collagen I levels whereas Myc overexpression enhanced FAC-induced activity of HSCs by increasing α-SMA and Collagen I levels; the effects of miR-374a overexpression could also be significantly reversed by Myc overexpression, indicating that miR-374a suppresses the activation of HSCs by inhibiting Myc to reduce FAC-induced increases in TGF-β1 and IL-6 release. In conclusion, we demonstrate a novel mechanism of miR-374a/Myc axis modulating iron overload-induced production of ROS and the activation of HSCs via TGF-β1 and IL-6.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.05.152DOI Listing

Publication Analysis

Top Keywords

tgf-β1 il-6
24
mir-374a overexpression
16
mir-374a/myc axis
12
iron overload-induced
12
ros activation
12
fac stimulation
12
myc overexpression
12
mir-374a
9
overload-induced production
8
production ros
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!