SummaryRabbits play an important role in people's lives due to their high nutritional value and high-quality hair that can be used as raw material for textiles. Furthermore, rabbits are an important animal model for human disease, as genome-edited animals are particularly valuable for studying gene functions and pathogenesis. Somatic cell nuclear transfer (SCNT) is an important technique for producing genome-edited animals and it has great value in saving endangered species and in clone stem cell therapy. However, the low efficiency of SCNT limits its application, with the selection of suitable rabbit oocytes being crucial to its success. In the present study, we collected oocytes from ovarian follicles and stained them with 26 μM brilliant cresyl blue (BCB). We then matured the oocytes in vitro and used them for SCNT. Comparison of the BCB-positive oocytes with BCB-negative oocytes and the control group showed that the BCB-positive group had a significantly higher maturation rate (81.4% vs. 48.9% and 65.3% for the negative and control groups, respectively), cleavage rate (86.6% vs. 67.9% and 77.9%), blastocyst rate (30.5% vs. 12.8% and 19.6%), total number of blastocysts (90±7.5 vs. 65.3±6.3 and 67.5±5.7), and inner cell mass (ICM)/ trophectoderm (TE) index (42.3±4.2 vs. 30.2±2.1 and 33.9±5.1) (P<0.05). The BCB-positive group had a significantly lower apoptosis index (2.1±0.6 vs. 8.2±0.9 and 6.7±1.1 for the negative and control groups, respectively) (P<0.05). These findings demonstrate that BCB-positive oocytes have a higher maturation ability and developmental competence in vitro, indicating that BCB staining is a reliable method for selecting oocytes to enhance the efficiency of SCNT.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0967199419000200DOI Listing

Publication Analysis

Top Keywords

oocytes
8
brilliant cresyl
8
cresyl blue
8
genome-edited animals
8
efficiency scnt
8
bcb-positive oocytes
8
bcb-positive group
8
higher maturation
8
negative control
8
control groups
8

Similar Publications

ZAR1/2-Regulated Epigenetic Modifications are Essential for Age-Associated Oocyte Quality Maintenance and Zygotic Activation.

Adv Sci (Weinh)

January 2025

Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.

The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.

View Article and Find Full Text PDF

Luteinizing hormone receptor deficiency in immature cumulus-oocyte complexes retrieved for assisted reproduction.

F S Sci

January 2025

Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. Electronic address:

This study investigated whether luteinizing hormone receptor (LHR) expression varies in the granulosa cells of individual follicles according to the maturation stage of the oocytes harvested for assisted reproductive technology (ART) treatment. We observed minimal to no LHR mRNA and protein expression in cumulus cells surrounding oocytes arrested in the germinal vesicle (GV) stage. Interestingly, their ability to mature was confirmed by rescue in vitro maturation, suggesting somatic cell LHR deficiency as a key factor for the retrieval of GV oocytes in ART procedures.

View Article and Find Full Text PDF

Legal framework and IVF outcomes: a comparative analysis of fresh and frozen embryo transfers in Switzerland.

Reprod Biomed Online

October 2024

Division of Gynaecological Endocrinology and Reproductive Medicine, University Women´s Hospital, Bern, Switzerland.

Research Question: To what extent do legislative measures impact standard reproductive outcome parameters?

Design: Retrospective cohort study using data from the Swiss national IVF registry analysing the outcomes of 13,908 women undergoing embryo transfers resulting from their first lifetime oocyte retrieval before (2014-2016) or after (2020-2022) revision of the legislation, allowing extended culture for 12 zygotes. Live birth rates (LBR) and cumulative LBR (cLBR) were compared in fresh and frozen embryo transfer strategies in both periods. Adjusted multivariable mixed model analyses were performed to determine OR and incidence rate ratios (IRR).

View Article and Find Full Text PDF

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Purpose: This study is to evaluate duration of oocyte cryostorage and association with thaw survival, fertilization, blastulation, ploidy rates, and pregnancy outcomes in patients seeking fertility preservation.

Methods: Retrospective cohort study to evaluate clinical outcomes in patients who underwent fertility preservation from 2011 to 2023 via oocyte vitrification for non-oncologic indications. Primary outcome was thaw survival rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!