Bone regeneration requires porous and mechanically stable scaffolds to support tissue integration and angiogenesis, which is essential for bone tissue regeneration. With the advent of additive manufacturing processes, production of complex porous architectures has become feasible. However, a balance has to be sorted between the porous architecture and mechanical stability, which facilitates bone regeneration for load bearing applications. The current study evaluates the use of high resolution digital light processing (DLP) -based additive manufacturing to produce complex but mechanical stable scaffolds based on β-tricalcium phosphate (β-TCP) for bone regeneration. Four different geometries: a rectilinear Grid, a hexagonal Kagome, a Schwarz primitive, and a hollow Schwarz architecture are designed with 400 μm pores and 75 or 50 vol% porosity. However, after initial screening for design stability and mechanical properties, only the rectilinear Grid structure, and the hexagonal Kagome structure are found to be reproducible and showed higher mechanical properties. Micro computed tomography (μ-CT) analysis shows <2 vol% error in porosity and <6% relative deviation of average pore sizes for the Grid structures. At 50 vol% porosity, this architecture also has the highest compressive strength of 44.7 MPa (Weibull modulus is 5.28), while bulk specimens reach 235 ± 37 MPa. To evaluate suitability of 3D scaffolds produced by DLP methods for bone regeneration, scaffolds were cultured with murine preosteoblastic MC3T3-E1 cells. Short term study showed cell growth over 14 d, with more than two-fold increase of alkaline phosphatase (ALP) activity compared to cells on 2D tissue culture plastic. Collagen deposition was increased by a factor of 1.5-2 when compared to the 2D controls. This confirms retention of biocompatible and osteo-inductive properties of β-TCP following the DLP process. This study has implications for designing of the high resolution porous scaffolds for bone regenerative applications and contributes to understanding of DLP based additive manufacturing process for medical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/ab279dDOI Listing

Publication Analysis

Top Keywords

bone regeneration
16
high resolution
8
stable scaffolds
8
additive manufacturing
8
rectilinear grid
8
hexagonal kagome
8
mechanical properties
8
bone
5
regeneration
5
application high
4

Similar Publications

PTX3-assembled pericellular hyaluronan matrix enhances endochondral ossification during fracture healing and heterotopic ossification.

Bone

December 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China. Electronic address:

Endochondral ossification (EO) is a pivotal process during fracture healing and traumatic heterotopic ossification (HO), involving the cartilaginous matrix synthesis and mineralization. Unlike the extracellular matrix, the hyaluronan (HA)-rich pericellular matrix (PCM) directly envelops chondrocytes, serving as the frontline for extracellular signal reception and undergoing dynamic remodeling. Pentraxin 3 (PTX3), a secreted glycoprotein, facilitates HA matrix assembly and remodeling.

View Article and Find Full Text PDF

Effect of cavity designs on instrumentation, obturation and fracture resistance of mandibular first premolars with Vertucci V canal.

J Endod

December 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan 430079, People's Republic of China. Electronic address:

Introduction: This study aimed to assess the effect of cavity designs on instrumentation, obturation and fracture resistance for mandibular first premolars with Vertucci V canal.

Methods: Mandibular first premolars with Vertucci V canal were scanned with micro-CT. 20 teeth with moderately curved canal were prepared with conservative endodontic cavity (CEC/M) or traditional endodontic cavity (TEC/M), and 30 with severely curved canal were prepared with CEC (CEC/S), modified CEC (MCEC/S) or TEC (TEC/S).

View Article and Find Full Text PDF

Elastic fibers of the internal and external elastic laminae maintain blood vessel shapes. Impairment of smooth muscle cell function leads to vascular disease development. F-box and WD-40 domain-containing protein 2 (FBXW2) is associated with elastic fibers and osteocalcin expression for bone regeneration in the periosteum.

View Article and Find Full Text PDF

Persistent oxidative stress following bone defects significantly impedes the repair of bone tissue. Designing an antioxidative hydrogel with a suitable mechanical strength can help alter the local microenvironment and promote bone defect healing. In this work, α-lipoic acid (LA), a natural antioxidant small molecule, was chemically cross-linked with lipoic acid-functionalized poly(ethylene glycol) (PEG, = 6k or 10k) in sodium bicarbonate solution, to prepare LA-PEG hydrogels (LP, = 6k or 10k).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!