Dexmedetomidine alleviates LPS-induced apoptosis and inflammation in macrophages by eliminating damaged mitochondria via PINK1 mediated mitophagy.

Int Immunopharmacol

Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China. Electronic address:

Published: August 2019

The macrophage is an innate immune response cell that plays an important role in the development of sepsis. Dexmedetomidine (DEX) is a sedation drug, which have anti-oxidative, anti-inflammatory and anti-apoptosis effects and can be used on sepsis patients in the ICU. However, its mechanisms of action remain poorly understood. PTEN-induced putative kinase 1 (PINK1) is a mitochondrial serine/threonine protein kinase that recognizes damaged mitochondria and leads to mitophagy. This study investigated the effects of DEX on Lipopolysaccharides(LPS)-induced macrophage injury and explained the underlying mechanisms. The results showed that LPS treatment caused mitochondrial damage, mitochondria-dependent apoptosis and PINK1-mediated mitophagy; at the same time, PINK1 has a protective effect on LPS-induced macrophage apoptosis and inflammation by mitophagy that eliminates dysfunctional mitochondria. DEX could promote the clearance of damaged mitochondria characterized by low Mitochondrial membrane potential (MMP) and high reactive oxygen species(ROS), thus exerting a protective effect in LPS treated macrophages, and PINK1 mediated mitophagy is required for this protective effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2019.05.027DOI Listing

Publication Analysis

Top Keywords

damaged mitochondria
12
apoptosis inflammation
8
pink1 mediated
8
mediated mitophagy
8
mitophagy
5
dexmedetomidine alleviates
4
alleviates lps-induced
4
lps-induced apoptosis
4
inflammation macrophages
4
macrophages eliminating
4

Similar Publications

The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria.

Cell Mol Life Sci

January 2025

State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.

Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.

View Article and Find Full Text PDF

Accumulation of autophagosomes in aging human photoreceptor cell synapses.

Exp Eye Res

January 2025

Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India. Electronic address:

Autophagy is common in the aging retinal pigment epithelium (RPE). A dysfunctional autophagy in aged RPE is implicated in the pathogenesis of age-related macular degeneration. Aging human retina accompanies degenerative changes in photoreceptor mitochondria.

View Article and Find Full Text PDF

Bisphenol A induces apoptosis and disrupts testosterone synthesis in TM3 cells via reactive oxygen species-mediated mitochondrial pathway and autophagic flux inhibition.

Ecotoxicol Environ Saf

January 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China. Electronic address:

Bisphenol A (BPA) is a common endocrine disruptor chemical that is widely used in the production of food plastic packaging, and it has been shown to potentially harm the reproductive system. However, the specific mechanism by which BPA induces apoptosis of Leydig cells (LCs) and inhibits testosterone synthesis in these cells is unclear. In the present study, TM3 cells were used as an experimental model in combination with a reactive oxygen species (ROS) scavenger (N-acetylcysteine), Caspase-3 inhibitor (Ac-DEVD-CHO), autophagy activator (Torin2), and autophagy inhibitor (Chloroquine) to investigate the potential mechanisms by which BPA causes TM3 cell damage in vitro.

View Article and Find Full Text PDF

Progress in the Study of TAp73 and Sperm Apoptosis.

Cell Biochem Funct

January 2025

Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China.

The study of the mechanism of oligoasthenospermia, which is a major cause of male infertility, has been the focus of research in the field of male reproduction. TAp73, a member of the p53 family of oncogenes, is endowed with tumor-suppressing activity due to its structural and functional homology with p53. It has been found that TAp73, plays a key role in spermatogenesis and maintaining male reproduction.

View Article and Find Full Text PDF
Article Synopsis
  • PFOS is a chemical frequently used in industries that can enter the environment and is resistant to breakdown, leading to health concerns.
  • Recent studies show a link between PFOS exposure in humans and various diseases, highlighting its impact on human health.
  • Research indicates that PFOS negatively affects endometrial cell function and morphology, potentially leading to issues with embryo implantation due to mitochondrial damage and alterations in key protein expression.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!