Real-time accident detection: Coping with imbalanced data.

Accid Anal Prev

Department of Civil and Materials Engineering, University of Illinois at Chicago, 842 W Taylor St, 2093 ERF, Chicago, IL 60607, United States. Electronic address:

Published: August 2019

Detecting accidents is of great importance since they often impose significant delay and inconvenience to road users. This study compares the performance of two popular machine learning models, Support Vector Machine (SVM) and Probabilistic Neural Network (PNN), to detect the occurrence of accidents on the Eisenhower expressway in Chicago. Accordingly, since the detection of accidents should be as rapid as possible, seven models are trained and tested for each machine learning technique, using traffic condition data from 1 to 7 min after the actual occurrence. The main sources of data used in this study consist of weather condition, accident, and loop detector data. Furthermore, to overcome the problem of imbalanced data (i.e., underrepresentation of accidents in the dataset), the Synthetic Minority Oversampling TEchnique (SMOTE) is used. The results show that although SVM achieves overall higher accuracy, PNN outperforms SVM regarding the Detection Rate (DR) (i.e., percentage of correct accident detections). In addition, while both models perform best at 5 min after the occurrence of accidents, models trained at 3 or 4 min after the occurrence of an accident detect accidents more rapidly while performing reasonably well. Lastly, a sensitivity analysis of PNN for Time-To-Detection (TTD) reveals that the speed difference between upstream and downstream of accidents location is particularly significant to detect the occurrence of accidents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aap.2019.05.014DOI Listing

Publication Analysis

Top Keywords

occurrence accidents
12
imbalanced data
8
accidents
8
machine learning
8
detect occurrence
8
models trained
8
data
5
occurrence
5
real-time accident
4
accident detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!