With efficient appearance learning models, discriminative correlation filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filters. Consequently, the process of learning spatial filters can be approximated by the lasso regularization. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimization framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123, and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2019.2919201DOI Listing

Publication Analysis

Top Keywords

temporal consistency
12
discriminative correlation
8
consistency preserving
8
preserving spatial
8
spatial feature
8
feature selection
8
object tracking
8
proposed method
8
spatial
6
temporal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!