A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ethyl Acetate Extract of Exerts Preferential Killing to Oral Cancer Cells. | LitMetric

plants are a folk medicine in many Southeast Asia countries for curing diseases but its anticancer effect is rarely investigated. The objectives of this study were to investigate the antioral cancer ability of ethyl acetate extract of (EANV). The preferential killing ability of EANV was determined by MTS-based cell viability assays. The bioactive effects were further screened by flow cytometry for apoptosis, oxidative stress, and DNA damage. At 24 h treatment, EANV dose dependently decreased six types of oral cancer cells, but the normal oral cells (HGF-1) kept a 90% viability. EANV also showed chronic antiproliferative effects and inhibited 3D sphere formation ability of oral cancer cells. Ca9-22 and CAL 27 oral cancer cells with high response to EANV increased subG1 populations and enhanced Annexin V- and pancaspase-detected apoptosis in these cells. EANV also induced the generation of reactive oxygen species (ROS) and mitochondrial superoxide and the dysfunction of mitochondrial membrane potential. Moreover, the oxidative DNA damage level such as 8-oxo-2'deoxyguanosine was increased in EANV-treated oral cancer cells. Taken together, EANV has a preferential killing effect against oral cancer cells associated with oxidative stress, apoptosis, and DNA damage, suggesting EANV as a potential antioral cancer agent.

Download full-text PDF

Source
http://dx.doi.org/10.1089/dna.2018.4436DOI Listing

Publication Analysis

Top Keywords

oral cancer
24
cancer cells
24
preferential killing
12
dna damage
12
ethyl acetate
8
acetate extract
8
killing oral
8
cancer
8
cells
8
antioral cancer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!