Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
plants are a folk medicine in many Southeast Asia countries for curing diseases but its anticancer effect is rarely investigated. The objectives of this study were to investigate the antioral cancer ability of ethyl acetate extract of (EANV). The preferential killing ability of EANV was determined by MTS-based cell viability assays. The bioactive effects were further screened by flow cytometry for apoptosis, oxidative stress, and DNA damage. At 24 h treatment, EANV dose dependently decreased six types of oral cancer cells, but the normal oral cells (HGF-1) kept a 90% viability. EANV also showed chronic antiproliferative effects and inhibited 3D sphere formation ability of oral cancer cells. Ca9-22 and CAL 27 oral cancer cells with high response to EANV increased subG1 populations and enhanced Annexin V- and pancaspase-detected apoptosis in these cells. EANV also induced the generation of reactive oxygen species (ROS) and mitochondrial superoxide and the dysfunction of mitochondrial membrane potential. Moreover, the oxidative DNA damage level such as 8-oxo-2'deoxyguanosine was increased in EANV-treated oral cancer cells. Taken together, EANV has a preferential killing effect against oral cancer cells associated with oxidative stress, apoptosis, and DNA damage, suggesting EANV as a potential antioral cancer agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/dna.2018.4436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!