The response of cultured cells to the mechanical properties of hydrogel substrates depends ultimately on the response of single crosslinks to external forces exerted at cell attachment points. We prepared hydrogels by co-polymerization of poly(ethylene glycol diacrylate) (PEGDA) and carboxy poly(ethylene glycol) acrylate (ACPEG-COOH) and confirmed fibroblast spreading on the hydrogel after the ACPEG linker was functionalized with the RGD cell adhesive motif. We performed specific force spectroscopy experiments on the same ACPEG linkers in order to probe the mechanics of single cross-links which mediate the cell attachment and spreading. Measurements were performed with tips of an atomic force microscope (AFM) functionalized with streptavidin and ACPEG linkers functionalized with biotin. We compared hydrogels of varying elastic modulus between 4 and 41 kPa which exhibited significant differences in cell spreading. An effective spring constant for the displacement of single cross-links at the hydrogel surface was derived from the distributions of rupture force and molecular stiffness. A factor of ten in the elastic modulus E of the hydrogel corresponded to a factor of five in the effective spring constant k of single crosslinks, indicating a transition in scaling with the mesh size ξ from the macroscopic E∝ξ to the molecular k∝ξ. The quantification of stiffness and deformation at the molecular length scale contributes to the discussion of mechanisms in force-regulated phenomena in cell biology.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr01784dDOI Listing

Publication Analysis

Top Keywords

single cross-links
12
cell attachment
12
mechanics single
8
cross-links mediate
8
mediate cell
8
hydrogel surface
8
single crosslinks
8
polyethylene glycol
8
acpeg linkers
8
elastic modulus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!