Botulinum toxin (BT) consists of botulinum neurotoxin and complexing proteins (CPs). CPs might provide mechanical protection for botulinum neurotoxin. As incobotulinumtoxinA (INCO, Xeomin®) does not contain CPs, we wanted to compare its mechanical stability to that of onabotulinumtoxinA (ONA, Botox®) containing CPs. For this, ONA and INCO were reconstituted without mechanical stress (NS) and with mechanical stress (WS) generated by a recently introduced stress test. Potencies were then measured by the paralysis times (PTs) in the mouse diaphragm assay. ONA-PT was 75.8 ± 10.3 min (n = 6) under NS and 116.7 ± 29.8 min (n = 6) under WS (two-tailed t test, p = 0.002). Mechanical stress increased the ONA-PT by 35.0% on the Growth Percentage Index. INCO-PT was 66.0 ± 7.0 min for NS and 76.0 ± 1.0 min for WS (t test, p = 0.129). Mechanical stress increased the INCO-PT by 13.2% on the Growth Percentage Index. Our data show that mechanical stress inactivates a CP-containing BT drug, but not a CP-free BT drug. We conclude that CPs do not provide protection against mechanical stress, supporting the view that CPs are not necessary for therapeutic purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00702-019-02023-xDOI Listing

Publication Analysis

Top Keywords

mechanical stress
24
mechanical
9
complexing proteins
8
provide mechanical
8
mechanical protection
8
protection botulinum
8
botulinum neurotoxin
8
cps provide
8
stress increased
8
growth percentage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!