Proper repair of double-strand breaks (DSBs) is key to ensure proper chromosome segregation. In this study, we found that the deletion of the SRS2 gene, which encodes a DNA helicase necessary for the control of homologous recombination, induces aberrant chromosome segregation during budding yeast meiosis. This abnormal chromosome segregation in srs2 cells accompanies the formation of a novel DNA damage induced during late meiotic prophase I. The damage may contain long stretches of single-stranded DNAs (ssDNAs), which lead to aggregate formation of a ssDNA binding protein, RPA, and a RecA homolog, Rad51, as well as other recombination proteins inside of the nuclei, but not that of a meiosis-specific Dmc1. The Rad51 aggregate formation in the srs2 mutant depends on the initiation of meiotic recombination and occurs in the absence of chromosome segregation. Importantly, as an early recombination intermediate, we detected a thin bridge of Rad51 between two Rad51 foci in the srs2 mutant, which is rarely seen in wild type. These might be cytological manifestation of the connection of two DSB ends and/or multi-invasion. The DNA damage with Rad51 aggregates in the srs2 mutant is passed through anaphases I and II, suggesting the absence of DNA damage-induced cell cycle arrest after the pachytene stage. We propose that Srs2 helicase resolves early protein-DNA recombination intermediates to suppress the formation of aberrant lethal DNA damage during late prophase I.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00412-019-00709-5 | DOI Listing |
Front Cell Dev Biol
January 2025
Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States.
Heat Shock Factor 1 (HSF1) is a major transcriptional factor regulating the heat shock response and has become a potential target for overcoming cancer chemoresistance. This review comprehensively examines HSF1's role in chemoresistance and its potential as a therapeutic target in cancer. We explore the complex, intricate mechanism that regulates the activation of HSF1, HSF1's function in promoting resistance to chemotherapy, and the strategies used to manipulate HSF1 for therapeutic benefit.
View Article and Find Full Text PDFJ Endocr Soc
January 2025
Division of Pediatric Endocrinology, Hadassah Medical Center, Jerusalem 91240, Israel.
Context: Despite a growing number of studies, the genetic etiology in many cases of ovarian dysgenesis is incompletely understood.
Objectives: This work aimed to study the genetic etiology causing absence of spontaneous pubertal development, hypergonadotropic hypogonadism, and primary amenorrhea in 2 sisters.
Methods: Whole-exome sequencing was performed on DNA extracted from peripheral lymphocytes of 2 Palestinian sisters born to consanguineous parents.
Front Pharmacol
January 2025
The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Background: Polydatin (3,4',5-trihydroxy-3-β-d-glucopyranoside, PD) is known for its antioxidant and anti-inflammatory properties. Oxaliplatin (OXA)-based chemotherapy is the first-line treatment for metastatic and recurrent colorectal cancer (CRC). However, the lack of selectivity for normal cells often results in side effects.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Obstetrics and Gynaecology, Assiut University, Assiut, Egypt.
Oxidative stress (OS) is established as a key factor in the etiology of both male and female infertility, arising from an imbalance between reactive oxygen species (ROS) production and the endogenous antioxidant (AOX) defenses. In men, OS adversely affects sperm function by inducing DNA damage, reducing motility, significantly impairing sperm vitality through plasma membrane peroxidation and loss of membrane integrity, and ultimately compromising overall sperm quality. In women, OS is implicated in various reproductive disorders, including polycystic ovary syndrome, endometriosis, and premature ovarian failure, leading to diminished oocyte quality, disrupted folliculogenesis, and poorer reproductive outcomes.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina.
Introduction: Polycystic Ovary Syndrome (PCOS) affects 5-20% of reproductive-aged women. Insulin resistance (IR) is common in PCOS with consequent elevated risks of metabolic disorders and cardiovascular mortality. PCOS and obesity are complex conditions associated with Metabolic Syndrome (MS), contributing to cardiovascular disease and type 2 diabetes mellitus (T2D).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!