Soft Robotic Actuators (SRAs) have piqued the interest of researchers in recent years. SRAs are generally constructed of soft elastomers and use air or water as a mean of actuation. Due to the inherent properties of these actuators, they are ideal for HumanRobot Interactions (HRI), exoskeletons for rehabilitation and for grasping delicate objects. Since SRA's are actuated using a fluid, being able to effectively control the rate of actuation, pressure and the force applied is necessary so that the actuator and the object being grasped does not get damaged. This paper aims to evaluate three types of controllers, an open-loop controller, pressure-feedback controller, and a force-feedback controller, all used to control an SRA. A custom test stand was built to hold the SRA and test it with all three controllers. The pressure-feedback controller was set to limit the pressure to 8.9 kPa and the force was limited to 0.147 N in the force-feedback controller. Since the open-loop controller had no feedback, the SRA was actuated at a specified frequency while force and pressure measurements were taken. The force-feedback and the pressure-feedback controllers accurately controlled the actuators and the open loop-controller was able to actuate the SRA reliably.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545483PMC

Publication Analysis

Top Keywords

force pressure
8
soft robotic
8
robotic actuators
8
open-loop controller
8
pressure-feedback controller
8
force-feedback controller
8
controller
6
force
4
pressure control
4
control soft
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!