Sculpting Light by Arranging Optical Components with DNA Nanostructures.

MRS Bull

Faculty of Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, 80539, München, Germany.

Published: December 2017

DNA nanotechnology has developed into a state where the design and assembly of complex nanoscale structures has become fast, reliable, cost-effective, and accessible to non-experts. Nanometer-precise positioning of organic (dyes, biomolecules, etc.) and inorganic (metal nanoparticles, colloidal quantum dots, etc.) components on DNA nanostructures is straightforward and modular. In this perspective article, we identify the opportunities and challenges that DNA-assembled devices and materials are facing for optical antennas, metamaterials, and sensing applications. With the abilities of arranging hybrid materials in defined geometries, plasmonic effects will, for example, amplify molecular recognition transduction so that single-molecule events will be measureable with simple devices. On the larger scale, DNA nanotechnology has the potential of breaking the symmetry of common self-assembled functional materials creating pre-defined optical properties such as refractive index tuning, Bragg reflection and topological insulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546597PMC
http://dx.doi.org/10.1557/mrs.2017.278DOI Listing

Publication Analysis

Top Keywords

components dna
8
dna nanostructures
8
dna nanotechnology
8
sculpting light
4
light arranging
4
arranging optical
4
optical components
4
dna
4
nanostructures dna
4
nanotechnology developed
4

Similar Publications

: Tumor associated macrophages (TAMs) are critical components in regulating the immune statuses of the tumor microenvironments. Although TAM has been intensively studied, it is unclear how mitochondrial proteins such as AGK regulate the TAMs' function. : We investigated the AGK function in TAMs using macrophage-specific deficient mice with B16 and LLC syngeneic tumor models.

View Article and Find Full Text PDF

U2AF1 mutation causes an oxidative stress and DNA repair defect in hematopoietic and leukemic cells.

Free Radic Biol Med

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College,Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin 301617, China. Electronic address:

U2AF1 is a core component of spliceosome and controls cell-fate specific alternative splicing. U2AF1 mutations have been frequently identified in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) patients, and mutations in U2AF1 are associated with poor prognosis in hematopoietic malignant diseases. Here, by forced expression of mutant U2AF1 (U2AF1 S34F) in hematopoietic and leukemic cell lines, we find that U2AF1 S34F causes increased reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Noncoding satellite DNA repeats are abundant at the pericentromeric heterochromatin of eukaryotic chromosomes. During interphase, sequence-specific DNA-binding proteins cluster these repeats from multiple chromosomes into nuclear foci known as chromocenters. Despite the pivotal role of chromocenters in cellular processes like genome encapsulation and gene repression, the associated proteins remain incompletely characterized.

View Article and Find Full Text PDF

Dual modes of DNA N-methyladenine maintenance by distinct methyltransferase complexes.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.

Stable inheritance of DNA N-methyladenine (6mA) is crucial for its biological functions in eukaryotes. Here, we identify two distinct methyltransferase (MTase) complexes, both sharing the catalytic subunit AMT1, but featuring AMT6 and AMT7 as their unique components, respectively. While the two complexes are jointly responsible for 6mA maintenance methylation, they exhibit distinct enzymology, DNA/chromatin affinity, genomic distribution, and knockout phenotypes.

View Article and Find Full Text PDF

The Transcriptomic and Gene Fusion Landscape of Pleomorphic Salivary Gland Adenomas.

Genes Chromosomes Cancer

January 2025

Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden.

Pleomorphic adenoma (PA) is the most common salivary gland tumor. PAs are characterized by chromosomal rearrangements of 8q12 and 12q14-15, leading to gene fusions involving the PLAG1 and HMGA2 oncogenes. Here, we performed the first comprehensive study of the transcriptomic and gene fusion landscape of 38 cytogenetically characterized PAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!